在長為12cm的線段AB上任取一點(diǎn)M,并以線段AM、BM為邊作長方形,則這個長方形的面積介于27cm2與35cm2之間的概率為
 
考點(diǎn):幾何概型
專題:計算題,概率與統(tǒng)計
分析:設(shè)AM=x,求出長方形的面積介于27cm2與35cm2之間,3≤x≤5或7≤x≤9,再根據(jù)概率公式解答即可.
解答: 解:設(shè)AM=x,則BM=12-x,
∵長方形的面積介于27cm2與35cm2之間,
∴27≤x(12-x)≤35,
∴3≤x≤5或7≤x≤9,
∴長方形的面積介于27cm2與35cm2之間的概率為
5-3+9-7
12
=
1
3

故答案為:
1
3
點(diǎn)評:此題結(jié)合幾何概率考查了概率公式,將AB間的距離分段,利用符合題意的長度比上AB的長度即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-|x|+1,判斷并證明f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,角A、B、C所對的邊分別為a、b、c,若2a
BC
+b
CA
+c
AB
=
0
,則△ABC的最小角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校課外活動小組在坐標(biāo)紙上為某沙漠設(shè)計植樹方案如下,第k棵樹種植在點(diǎn)Pk(xk,yk)處,其中x1=1,y1=1,當(dāng)k≥2時,
xk=xk-1+1-6[
k-1
6
]+6[
k-2
6
]
yk=yk-1+[
k-1
6
]-[
k-2
6
]

其中[a]表示不大于實(shí)數(shù)a的最大整數(shù),如[2.6]=2、[-0.6]=-1,按此方案第2013棵樹種植點(diǎn)的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(x,y)在直線x+2y=3上移動,當(dāng)2x+4y取得最小值時,過點(diǎn)P引圓(x-
1
2
)2+(y+
1
4
)2=
1
2
的切線,則此切線段的長度為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某小學(xué)100名同學(xué)的身高(單位:厘米)數(shù)據(jù)統(tǒng)計如下表,用分層抽樣從這100人中選取30人參加一項(xiàng)活動,則從身高在[120,130)內(nèi)的學(xué)生中選取的人數(shù)應(yīng)為
 

身高[100,110)[110,120)[120,130)[130,140)[140,150)
人數(shù)5
頻率0.050.350.30.20.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=3,則f(x+2)的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={y|y=x2-2x+3},B={y|y=2x2-3x+2},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sin(
π
6
-θ)=
1
3
,則cos(
3
+2θ)的值為( 。
A、
1
3
B、-
1
3
C、
7
9
D、-
7
9

查看答案和解析>>

同步練習(xí)冊答案