【題目】某飲料生產(chǎn)企業(yè)為了占有更多的市場份額,擬在2017年度進行一系列促銷活動,經(jīng)過市場調(diào)查和測算,飲料的年銷售量x萬件與年促銷費t萬元間滿足 .已知2017年生產(chǎn)飲料的設(shè)備折舊,維修等固定費用為3萬元,每生產(chǎn)1萬件飲料需再投入32萬元的生產(chǎn)費用,若將每件飲料的售價定為其生產(chǎn)成本的150%與平均每件促銷費的一半之和,則該年生產(chǎn)的飲料正好能銷售完.
(1)將2017年的利潤y(萬元)表示為促銷費t(萬元)的函數(shù);
(2)該企業(yè)2017年的促銷費投入多少萬元時,企業(yè)的年利潤最大?
(注:利潤=銷售收入-生產(chǎn)成本-促銷費,生產(chǎn)成本=固定費用+生產(chǎn)費用)
【答案】
(1)解:當年銷量為x萬件時,成本為3+32x(萬元).
飲料的售價為 ×150%+ × (萬元/萬件),
所以年利潤y= x-(3+32x+t)(萬元),
把x= 代入整理得到y(tǒng)= ,其中t≥0.
(2)解:由(1)知y= = =50- ≤50-2 =42(萬元),
當且僅當 = ,即t=7時,ymax=42.
所以該企業(yè)2017年的促銷費投入7萬元時,企業(yè)的年利潤最大為42萬元.
【解析】(1)確定飲料的售價,即可通過x表示出年利潤y,化簡代入整理即可求出y萬元表示為促銷費t萬元的函數(shù);
(2)根據(jù)已知代入(1)的函數(shù),分別進行化簡,利用關(guān)于t的方程必須有兩正根建立關(guān)系式,可求出最值,即促銷費投入多少萬元時,企業(yè)的年利潤最大.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AC=2,A=120°, .
(Ⅰ)求邊AB的長;
(Ⅱ)設(shè)(3,4)是BC邊上一點,且△ACD的面積為 ,求∠ADC的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等腰梯形ABCD中AB∥CD,AB=2CD=4,∠BAD=60°,雙曲線以A,B為焦點,且與線段CD(包括端點C、D)有兩個交點,則該雙曲線的離心率的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}及{bn}中,an+1=an+bn+ =1.設(shè) ,則數(shù)列{cn}的前n項和為( 。
A.
B.2n+2﹣4
C.3×2n+2n﹣4
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程是 (m為參數(shù)),直線l交曲線C1于A,B兩點;以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程是ρ=4sin(θ﹣ ),點P(ρ, )在曲線C2上.
(1)求曲線C1的普通方程及點P的直角坐標;
(2)若直線l的傾斜角為 且經(jīng)過點P,求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓 : ( )與直線 : 相切,設(shè)點 為圓上一動點, 軸于 ,且動點 滿足 ,設(shè)動點 的軌跡為曲線 .
(1)求曲線 的方程;
(2)直線 與直線 垂直且與曲線 交于 , 兩點,求 面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , .
(1)求函數(shù) 的單調(diào)增區(qū)間;
(2)若 ,解不等式 ;
(3)若 ,且對任意 ,方程 在 總存在兩不相等的實數(shù)根,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四位同學(xué)一起去向老師詢問成語競賽的成績,老師說,你們四人中有2位優(yōu)秀,2位良好,我現(xiàn)在給甲看乙、丙的成績,給乙看丙的成績,給丁看甲的成績,看后甲對大家說:我還是不知道我的成績,根據(jù)以上信息,則( )
A.乙可以知道兩人的成績
B.丁可能知道兩人的成績
C.乙、丁可以知道對方的成績
D.乙、丁可以知道自己的成績
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系 中,以坐標原點為極點, 軸正半軸為極軸建立極坐標系. 曲線 的極坐標方程為 , 為曲線 上異于極點的動點,點 在射線 上,且 成等比數(shù)列.
(Ⅰ)求點 的軌跡 的直角坐標方程;
(Ⅱ)已知 , 是曲線 上的一點且橫坐標為 ,直線 與 交于 兩點,試求 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com