計(jì)算下列定積分的值:
(1);(2).

(1);(2).

解析試題分析:(1)利用常見函數(shù)的導(dǎo)數(shù)公式,找到函數(shù),使得,所以(這是定區(qū)間的積分問題,通常只須取進(jìn)行計(jì)算即可),然后利用微分定理可得,從中進(jìn)行運(yùn)算即可;(2)在計(jì)算一些函數(shù)的定積分時(shí),通常先要將積分函數(shù)化簡(jiǎn)為,然后利用常見函數(shù)的導(dǎo)數(shù)公式,找到,使得,從而,從中進(jìn)行運(yùn)算即可.
試題解析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/47/d/1vsr14.png" style="vertical-align:middle;" />
所以
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/46/c/1sura4.png" style="vertical-align:middle;" />且
所以
.
考點(diǎn):定積分的運(yùn)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=-x3+ax2-4(),是f(x)的導(dǎo)函數(shù).
(1)當(dāng)a=2時(shí),對(duì)任意的的最小值;
(2)若存在使f(x0)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)與函數(shù)在點(diǎn)處有公共的切線,設(shè).
(1) 求的值
(2)求在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)求函數(shù)上的最小值;
(2)若存在是自然對(duì)數(shù)的底數(shù),,使不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)。
(1)若,求處的切線方程;
(2)若在R上是增函數(shù),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知某商品的進(jìn)貨單價(jià)為1元/件,商戶甲往年以單價(jià)2元/件銷售該商品時(shí),年銷量為1萬件,今年擬下調(diào)銷售單價(jià)以提高銷量,增加收益.據(jù)測(cè)算,若今年的實(shí)際銷售單價(jià)為x元/件(1≤x≤2),今年新增的年銷量(單位:萬件)與(2-x)2成正比,比例系數(shù)為4.
(1)寫出今年商戶甲的收益y(單位:萬元)與今年的實(shí)際銷售單價(jià)x間的函數(shù)關(guān)系式;
(2)商戶甲今年采取降低單價(jià),提高銷量的營(yíng)銷策略是否能獲得比往年更大的收益(即比往年收益更多)?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=lnx-a2x2+ax(aR).
(l)當(dāng)a=1時(shí),證明:函數(shù)f(x)只有一個(gè)零點(diǎn);
(2)若函數(shù)f(x)在區(qū)間(1,十)上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=(x2ax-2a2+3a)ex(x∈R),其中a∈R.
(1)當(dāng)a=0時(shí),求曲線yf(x)在點(diǎn)(1,f(1))處的切線的斜率;
(2)當(dāng)a時(shí),求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是常數(shù)),若對(duì)曲線上任意一點(diǎn)處的切線,恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案