【題目】某花圃為提高某品種花苗質量,開展技術創(chuàng)新活動,在A,B實驗地分別用甲、乙方法培育該品種花苗.為觀測其生長情況,分別在實驗地隨機抽取各50株,對每株進行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80及以上的花苗為優(yōu)質花苗.
(1)求圖中a的值;
(2)用樣本估計總體,以頻率作為概率,若在A,B兩塊試驗地隨機抽取3棵花苗,求所抽取的花苗中的優(yōu)質花苗數的分布列和數學期望.
科目:高中數學 來源: 題型:
【題目】學校游園活動有這樣一個游戲項目:甲箱子里裝有3個白球、2個黑球,乙箱子里裝有1個白球、2個黑球,這些球除顏色外完全相同.每次游戲從這兩個箱子里各隨機摸出2個球,若摸出的白球不少于2個,則獲獎.(每次游戲結束后將球放回原箱)
(1)求在1次游戲中,
①摸出3個白球的概率;
②獲獎的概率;
(2)求在2次游戲中獲獎次數的分布列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】求下列函數的單調區(qū)間,并指出該函數在其單調區(qū)間上是增函數還是減函數.
(1)f(x)=-;
(2)f(x)=
(3)f(x)=-x2+2|x|+3.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某海濱浴場海浪的高度y(米)是時間t的(0≤t≤24,單位:小時)函數,記作y=f(t),下表是某日各時的浪高數據:
t(h) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(m) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
經長期觀測,y=f(t)的曲線可近似地看成是函數y=Acosωt+b的圖象.
(1)根據以上數據,求出函數y=Acosωt+b的最小正周期T、振幅A及函數表達式;
(2)依據規(guī)定,當海浪高度高于1米時才對沖浪愛好者開放,請依據(1)的結論,判斷一天內的上午8時到晚上20時之間,有多長時間可供沖浪者進行運動?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】高三(3)班學生要安排畢業(yè)晚會的3個音樂節(jié)目,2個舞蹈節(jié)目和1個曲藝節(jié)目的演出順序,要求2個舞蹈節(jié)目不連排,3個音樂節(jié)目恰有2個節(jié)目連排,則不同排法的種數是________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某水果批發(fā)商銷售進價為每箱40元的蘋果,假設每箱售價不低于50元且不得高于55元,市場調查發(fā)現(xiàn),若每箱以50元的價格銷售,平均每天銷售90箱,價格每提高1元,平均每天少銷售3箱.
(1)求平均每天的銷售量y(箱)與銷售單價x(元/箱)之間的函數關系式.
(2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售單價x(元/箱)之間的函數關系式.
(3)當每箱蘋果的售價為多少元時,每天可以獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex-ax-1,其中e是自然對數的底數,實數a是常數.
(1)設a=e,求函數f(x)的圖象在點(1,f(1))處的切線方程;
(2)討論函數f(x)的單調性.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某機構為了解某地區(qū)中學生在校月消費情況,隨機抽取了100名中學生進行調查.右圖是根據調查的結果繪制的學生在校月消費金額的頻率分布直方圖.已知[350,450),[450,550),[550,650)三個金額段的學生人數成等差數列,將月消費金額不低于550元的學生稱為“高消費群” .
(1)求m,n的值,并求這100名學生月消費金額的樣本平均數(同一組中的數據用該組區(qū)間的中點值作代表);
(2)根據已知條件完成下面2×2列聯(lián)表,并判斷能否有90%的把握認為“高消費群”與性別有關?
高消費群 | 非高消費群 | 合計 | |
男 | |||
女 | 10 | 50 | |
合計 |
(參考公式:,其中)
P() | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com