6.求函數(shù)f(x)=xe-x的單調(diào)區(qū)間和極值.

分析 求導(dǎo)函數(shù),由導(dǎo)數(shù)的符號,可得函數(shù)的單調(diào)區(qū)間,從而可求函數(shù)的極值.

解答 解:函數(shù)f(x)=xe-x可得:f′(x)=(1-x)e-x,
令f′(x)=0,解得x=1.----------------(4分)
當(dāng)x變化時,f′(x),f(x)的變化情況如下表:

x(-∞,1)1(1,+∞)
f′(x)+0-
f(x)遞增$\frac{1}{e}$遞減
------(10分)
所以f(x)在(-∞,1)內(nèi)是增函數(shù),在(1,+∞)內(nèi)是減函數(shù),
函數(shù)f(x)在x=1處取得極大值f(1),即f(1)=$\frac{1}{e}$-----------(14分)

點評 本題考查導(dǎo)數(shù)的幾何意義,考查函數(shù)的單調(diào)性與極值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若經(jīng)過拋物線y2=4x焦點的直線l與圓(x-4)2+y2=4相切,則直線l的斜率為±$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知a,b,c分別是△ABC的三個內(nèi)角A,B,C的三條對邊,且c2=a2+b2-ab.
(Ⅰ)求角C的大。
(Ⅱ)求cosA+cosB的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知2sin2A+sin(A-B)=sinC,且$A≠\frac{π}{2}$.
(Ⅰ)求$\frac{a}$的值;
(Ⅱ)若c=2,$C=\frac{π}{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知點F(1,0),圓E:(x+1)2+y2=8,點P是圓E上任意一點,線段PF的垂直平分線和半徑PE相交于Q.
(1)求動點Q的軌跡Γ的方程;
(2)若直線l與圓O:x2+y2=1相切,并與(1)中軌跡Γ交于不同的兩點A、B.當(dāng)$\overrightarrow{OA}$•$\overrightarrow{OB}$=λ,且滿足$\frac{2}{3}$≤λ$≤\frac{3}{4}$時,求△AOB面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)的定義域為R,f(x)=$\left\{\begin{array}{l}{-x,-1≤x≤0}\\{{3}^{x}-1,0<x<1}\end{array}\right.$,且對任意的x∈R都有f(x+1)=-$\frac{1}{f(x)}$,若在區(qū)間[-5,1]上函數(shù)g(x)=f(x)-mx+m恰有5個不同零點,則實數(shù)m的取值范圍是( 。
A.[-$\frac{1}{4}$,-$\frac{1}{6}$)B.(-$\frac{1}{2}$,-$\frac{1}{4}$]C.(-$\frac{1}{6}$,0]D.(-$\frac{1}{2}$,-$\frac{1}{6}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的離心率為$\frac{3}{5}$,且短軸長為8
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)F1、F2分別為橢圓C的左、右焦點,過F2的直線l與橢圓C交于不同兩點M,N,若△F1MN的內(nèi)切圓周長為π,M(x1,y1)、N(x2,y2),求|y1-y2|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,角A,B,C所對的邊分別是a,b,c,且$\frac{cosA}{a}$+$\frac{cosB}$=$\frac{1}{c}$.
(1)證明:a,c,b成等比數(shù)列;
(2)若△ABC的外接圓半徑為$\sqrt{3}$,且4sin(C-$\frac{π}{6}$)cosC=1,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,角A,B,C的對邊分別為a,b,c,且a=2b,又sinA,sinC,sinB成等差數(shù)列.
(1)求cosA的值;
(2)若${S_{△ABC}}=\frac{{8\sqrt{15}}}{3}$,求c的值.

查看答案和解析>>

同步練習(xí)冊答案