11.設(shè)函數(shù)f(x)的定義域?yàn)镽,f(x)=$\left\{\begin{array}{l}{-x,-1≤x≤0}\\{{3}^{x}-1,0<x<1}\end{array}\right.$,且對(duì)任意的x∈R都有f(x+1)=-$\frac{1}{f(x)}$,若在區(qū)間[-5,1]上函數(shù)g(x)=f(x)-mx+m恰有5個(gè)不同零點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.[-$\frac{1}{4}$,-$\frac{1}{6}$)B.(-$\frac{1}{2}$,-$\frac{1}{4}$]C.(-$\frac{1}{6}$,0]D.(-$\frac{1}{2}$,-$\frac{1}{6}$]

分析 求出f(x)的周期,作出f(x)的函數(shù)圖象,令y=mx-m與f(x)在[-5,1]上的圖象有5個(gè)交點(diǎn),即可求出m的范圍.

解答 解:∵f(x+1)=-$\frac{1}{f(x)}$,∴f(x+2)=-$\frac{1}{f(x+1)}$,
∴f(x)=f(x+2),即f(x)的周期為2.
作出f(x)在[-5,1]上的函數(shù)圖象如圖所示:

令g(x)=0得f(x)=mx-m,
則直線y=mx-m與f(x)在[-5,1]上有5個(gè)交點(diǎn).
當(dāng)直線y=mx-m過點(diǎn)(-3,1)時(shí),直線y=mx-m與f(x)在[-5,1]上恰好有5個(gè)交點(diǎn),
此時(shí)-3m-m=1,即m=-$\frac{1}{4}$,
當(dāng)直線y=mx-m過點(diǎn)(-5,1)時(shí),直線y=mx-m與f(x)在[-5,1]上恰好有6個(gè)交點(diǎn),
此時(shí)-5m-m=1,即m=-$\frac{1}{6}$.
∴-$\frac{1}{4}$≤m<-$\frac{1}{6}$.
故選A.

點(diǎn)評(píng) 本題考查了函數(shù)的周期性應(yīng)用,函數(shù)圖象與函數(shù)零點(diǎn)的關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若對(duì)?m,n∈R,有g(shù)(m+n)=g(m)+g(n)-3,求$f(x)=\frac{{x\sqrt{1-{x^2}}}}{{{x^2}+1}}+g(x)$的最大值與最小值之和是( 。
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.甲乙兩個(gè)口袋分別裝有四張撲克牌,甲口袋內(nèi)的四張牌分別為紅桃A,方片A,黑桃Q與梅花K,乙口袋內(nèi)的四張牌分別為黑桃A,方片Q,梅花Q與黑桃K,從兩個(gè)口袋分別任取兩張牌.
(Ⅰ)求恰好抽到兩張A的概率.
(Ⅱ)記四張牌中含有黑桃的張數(shù)為x,求x的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知x,y∈R,m+n=7,f(x)=|x-1|-|x+1|.
(Ⅰ)解不等式f(x)≥(m+n)x;
(Ⅱ)設(shè)$max|{a,b}|=\left\{\begin{array}{l}a\;\;\;(a≥b)\\ b\;\;\;(a<b)\end{array}\right.$,求F=max{|x2-4y+m|,|y2-2x+n|}的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求函數(shù)f(x)=xe-x的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.雙曲線的兩條漸近線的方程為$y=±\sqrt{2}x$,且經(jīng)過點(diǎn)$({3,-2\sqrt{3}})$
(1)求雙曲線的方程;
(2)雙曲線的左右焦點(diǎn)分別為F1,F(xiàn)2,P為雙曲線上一點(diǎn),∠F1PF2為60°,求${S_{△P{F_1}{F_2}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知數(shù)列{an}的通項(xiàng)an=log(n+1)(n+2),(n∈N*)我們把使乘積a1a2a3…an為整數(shù)的n叫做“優(yōu)數(shù)”,則在(1,2016]內(nèi)的所有“優(yōu)數(shù)”的和為2026.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知直線l:ax+by-2=0平分圓x2+y2-6x-4y-12=0,若a,b均為正數(shù),則$\frac{3}{a}$+$\frac{2}$的最小值是( 。
A.25B.12C.$\frac{25}{2}$D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)函數(shù)f(x)=(ex-1)•(x-1)2則( 。
A.f(x)在x=1處取到極小值B.f(x)在x=1處取到極大值
C.f(x)在x=-1處取到極小值D.f(x)在x=-1處取到極大值

查看答案和解析>>

同步練習(xí)冊(cè)答案