20.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知2sin2A+sin(A-B)=sinC,且$A≠\frac{π}{2}$.
(Ⅰ)求$\frac{a}$的值;
(Ⅱ)若c=2,$C=\frac{π}{3}$,求△ABC的面積.

分析 (Ⅰ)根據(jù)三角形內(nèi)角和定理sinC=sin(A+B),打開化解,根據(jù)正弦定理,可得$\frac{a}$的值;
(Ⅱ)c=2,$C=\frac{π}{3}$,由余弦定理求出a,b的值,根據(jù)△ABC的面積$S=\frac{1}{2}absinC$可得答案.

解答 解:(Ⅰ)由2sin2A+sin(A-B)=sinC,
可得2sin2A+sin(A-B)=sin(A+B),可得:2sinAcosA=sinBcosA
∵$A≠\frac{π}{2}$.
∴cosA≠0.
得2sinA=sinB,
由正弦定理:2a=b,即$\frac{a}$=$\frac{1}{2}$.
(Ⅱ)已知c=2,$C=\frac{π}{3}$,
由余弦定理:得a2+b2-ab=4.
又由(Ⅰ)可知:2a=b,
從而解得:a=$\frac{2\sqrt{3}}{3}$,b=$\frac{4\sqrt{3}}{3}$
那么:△ABC的面積$S=\frac{1}{2}absinC$=$\frac{2\sqrt{3}}{3}$.

點評 本體考查了正余弦定理的運(yùn)用和計算能力.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{x^2}{4}+\frac{y^2}{b^2}=1$(b>0),以橢圓C的短軸為直徑的圓O經(jīng)過橢圓C左右兩個焦點,A,B是橢圓C的長軸端點.
(1)求圓O的方程和橢圓C的離心率e;
(2)設(shè)P,Q分別是橢圓C和圓O上的動點(P,Q位于y軸兩側(cè)),且直線PQ與x軸平行,直線AP,BP分別與y軸交于點M,N,試判斷MQ與NQ所在的直線是否互相垂直,若是,請證明你的結(jié)論;若不是,也請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為2,若拋物線C2:x2=2py(p>0)的焦點到雙曲線C1的漸近線的距離為2,則拋物線C2的方程為x2=16y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.甲乙兩個口袋分別裝有四張撲克牌,甲口袋內(nèi)的四張牌分別為紅桃A,方片A,黑桃Q與梅花K,乙口袋內(nèi)的四張牌分別為黑桃A,方片Q,梅花Q與黑桃K,從兩個口袋分別任取兩張牌.
(Ⅰ)求恰好抽到兩張A的概率.
(Ⅱ)記四張牌中含有黑桃的張數(shù)為x,求x的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知雙曲線${x^2}-\frac{y^2}{b^2}=1({b>0})$,以原點O為圓心,雙曲線的實半軸長為半徑長的圓與雙曲線的兩條漸近線相交于A,B,C,D四點,這四點圍成的四邊形面積為b,則雙曲線的離心率為( 。
A.$\sqrt{3}$B.2C.3D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知x,y∈R,m+n=7,f(x)=|x-1|-|x+1|.
(Ⅰ)解不等式f(x)≥(m+n)x;
(Ⅱ)設(shè)$max|{a,b}|=\left\{\begin{array}{l}a\;\;\;(a≥b)\\ b\;\;\;(a<b)\end{array}\right.$,求F=max{|x2-4y+m|,|y2-2x+n|}的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求函數(shù)f(x)=xe-x的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知數(shù)列{an}的通項an=log(n+1)(n+2),(n∈N*)我們把使乘積a1a2a3…an為整數(shù)的n叫做“優(yōu)數(shù)”,則在(1,2016]內(nèi)的所有“優(yōu)數(shù)”的和為2026.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知△ABC中,角A、B、C所對的邊長分別為a、b、c,且知A、B、C依次成等差數(shù)列,a+c=13,a2+c2=89,m為函數(shù)$y=\frac{{{x^2}+1}}{{\sqrt{{x^2}+1}}}$的最小值;橢圓E:的左右焦點為F1,F(xiàn)2,E上一點P到F1距離的最大值為b,最小值為m,則橢圓E的離心率的算術(shù)平方根為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{7}$

查看答案和解析>>

同步練習(xí)冊答案