【題目】某市農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了日至日的每天晝夜溫度與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):

日期

溫差

發(fā)芽數(shù)(顆)

由表中根據(jù)日至的數(shù)據(jù),求的線性回歸方程中的,則______,若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過顆,則認(rèn)為得到的線性回歸方程是可靠的,則求得的線性回歸方程____.(填“可靠”或“不可幕”)

【答案】 可靠

【解析】

1)先求出樣本中心點(diǎn)的坐標(biāo),再求出的值得解;(2)求出121日和125日的估計(jì)數(shù)據(jù),再根據(jù)題意判斷線性回歸方程是否可靠.

1)由題得

所以樣本中心點(diǎn)為(12,28),

所以,

所以. 所以.

2)由題得.

121日的估計(jì)值為:,23-22=1,沒有超過1.

125日的估計(jì)值為:,16-16=0,沒有超過1.

所以求得的線性回歸方程可靠.

故答案為:(1). (2). 可靠

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系. 已知曲線的極坐標(biāo)方程為 ,直線 的參數(shù)方程為 (為參數(shù)).

(I)分別求曲線的直角坐標(biāo)方程和直線 的普通方程;

(II)設(shè)曲線和直線相交于兩點(diǎn),求弦長的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《周髀算經(jīng)》中給出了弦圖,所謂弦圖是由四個(gè)全等的直角三角形和中間一個(gè)小正方形拼成一個(gè)大的正方形,若圖中直角三角形兩銳角分別為,,且小正方形與大正方形面積之比為,則的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.直線過點(diǎn).

(1)若直線與曲線交于兩點(diǎn),求的值;

(2)求曲線的內(nèi)接矩形的周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大衍數(shù)列,來源于《乾坤譜》中對易傳“大衍之?dāng)?shù)五十“的推論.主要用于解釋中國傳統(tǒng)文化中的太極衍生原理數(shù)列中的每一項(xiàng),都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和是中華傳統(tǒng)文化中隱藏著的世界數(shù)學(xué)史上第一道數(shù)列題其規(guī)律是:偶數(shù)項(xiàng)是序號平方再除以2,奇數(shù)項(xiàng)是序號平方減1再除以2,其前10項(xiàng)依次是0,2,4,8,12,18,24,32,40,50,,如圖所示的程序框圖是為了得到大衍數(shù)列的前100項(xiàng)而設(shè)計(jì)的,那么在兩個(gè)判斷框中,可以先后填入( )

A. 是偶數(shù)?,? B. 是奇數(shù)?,?

C. 是偶數(shù)?, ? D. 是奇數(shù)?,?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題:,則關(guān)于x的不等式的解集為空集,那么它的逆命題,否命題,逆否命題,以及原命題中,假命題的個(gè)數(shù)是( 。

A.0B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線截圓所得的弦長為.直線的方程為

(1)求圓的方程;

(2)若直線過定點(diǎn),點(diǎn)在圓上,且,為線段的中點(diǎn),求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)有兩個(gè)命題:(1)不等式|x|+|x-1|>m的解集為R;(2)函數(shù)f(x)=(7-3m)x在R上是增函數(shù);如果這兩個(gè)命題中有且只有一個(gè)是真命題,則m的取值范圍是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心為,且直線與圓相切,設(shè)直線的方程為,若點(diǎn)在直線上,過點(diǎn)作圓的切線,切點(diǎn)為.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)若,試求點(diǎn)的坐標(biāo);

(3)若點(diǎn)的坐標(biāo)為,過點(diǎn)作直線與圓交于兩點(diǎn),當(dāng)時(shí),求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案