【題目】如果是拋物線上的點(diǎn),它們的橫坐標(biāo)依次為,是拋物線的焦點(diǎn),若,則_______________.
【答案】
【解析】
分析: 根據(jù)拋物線的定義得拋物線上的點(diǎn)到焦點(diǎn)的距離等于該點(diǎn)到準(zhǔn)線的距離,因此求出拋物線的準(zhǔn)線方程,結(jié)合題中數(shù)據(jù)加以計(jì)算,即可得到本題答案.
詳解: ∵拋物線y2=4x的焦點(diǎn)為F(1,0),準(zhǔn)線為x=﹣1,
∴根據(jù)拋物線的定義,Pi(i=1,2,3,…,8)到焦點(diǎn)的距離等于Pi到準(zhǔn)線的距離,即|PiF|=xi+1,
可得|P1F|+|P2F|+…|P8F|=(x1+1)+(x2+1)+…+(x8+1)=()+8,
∵,
∴10+8=18.
故答案為:18
點(diǎn)睛: 1.凡涉及拋物線上的點(diǎn)到焦點(diǎn)距離時(shí),一般運(yùn)用定義轉(zhuǎn)化為到準(zhǔn)線距離處理.本題中充分運(yùn)用拋物線定義實(shí)施轉(zhuǎn)化,其關(guān)鍵在于求點(diǎn)的坐標(biāo).
2.若為拋物線上一點(diǎn),由定義易得;若過焦點(diǎn)的弦的端點(diǎn)坐標(biāo)為,則弦長(zhǎng)為可由根與系數(shù)的關(guān)系整體求出;若遇到其他標(biāo)準(zhǔn)方程,則焦半徑或焦點(diǎn)弦長(zhǎng)公式可由數(shù)形結(jié)合的方法類似地得到.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)有兩個(gè)極值點(diǎn),,且.
()求的取值范圍,并討論的單調(diào)性.
()證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖所示的幾何體中, ,平面,且平面,正方形的邊長(zhǎng)為2,為棱中點(diǎn),平面分別與棱交于點(diǎn).
(Ⅰ)求證:;
(Ⅱ)求證:平面平面;
(Ⅲ)求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(α)=.
(1)化簡(jiǎn)f(α);
(2)若f(α)=,且<α<,求cosα-sinα的值;
(3)若α=-,求f(α)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)二次函數(shù)的圖像過點(diǎn),且滿足恒成立.
(1)求的解析式;
(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,命題:對(duì),不等式恒成立;命題,使得成立.
(1)若為真命題,求的取值范圍;
(2)當(dāng)時(shí),若假,為真,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠B=90°,BC=6,AB=8,點(diǎn)M為△ABC內(nèi)切圓的圓心,過點(diǎn)M作動(dòng)直線l與線段AB,AC都相交,將△ABC沿動(dòng)直線l翻折,使翻折后的點(diǎn)A在平面BCM上的射影P落在直線BC上,點(diǎn)A在直線l上的射影為Q,則的最小值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著西部大開發(fā)的深入,西南地區(qū)的大學(xué)越來(lái)越受到廣大考生的青睞.下表是西南地區(qū)某大學(xué)近五年的錄取平均分與省一本線對(duì)比表:
年份 | |||||
年份代碼 | |||||
省一本線 | |||||
錄取平均分 | |||||
錄取平均分與省一本線分差 |
(1)根據(jù)上表數(shù)據(jù)可知,與之間存在線性相關(guān)關(guān)系,求關(guān)于的性回歸方程;
(2)假設(shè)2019年該省一本線為分,利用(1)中求出的回歸方程預(yù)測(cè)2019年該大學(xué)錄取平均分.
參考公式:,
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com