【題目】已知函數(shù)在處的切線經(jīng)過點(diǎn)
(1)討論函數(shù)的單調(diào)性;
(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1)在單調(diào)遞減;(2)
【解析】試題分析: (1)利用導(dǎo)數(shù)幾何意義,求出切線方程,根據(jù)切線過點(diǎn),求出函數(shù)的解析式; (2)由已知不等式分離出,得,令,求導(dǎo)得出 在 上為減函數(shù),再求出的最小值,從而得出的范圍.
試題解析:(1)
令∴
∴ 設(shè)切點(diǎn)為
代入
∴
∴
∴在單調(diào)遞減
(2)恒成立
令
∴在單調(diào)遞減
∵
∴
∴在恒大于0
∴
點(diǎn)睛: 本題主要考查了導(dǎo)數(shù)的幾何意義以及導(dǎo)數(shù)的應(yīng)用,包括求函數(shù)的單調(diào)性和最值,屬于中檔題. 注意第二問中的恒成立問題,等價轉(zhuǎn)化為求的最小值,直接求的最小值比較復(fù)雜,所以先令,求出在 上的單調(diào)性,再求出的最小值,得到的范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x=3是函數(shù)f(x)=aln(1+x)+x2-10x的一個極值點(diǎn).
(1)求a;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O1和圓O2的極坐標(biāo)方程分別為ρ=2,ρ2-2ρcos(θ-)=2.
(1)把圓O1和圓O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)設(shè)兩圓交點(diǎn)分別為A、B,求直線AB的參數(shù)方程,并利用直線AB的參數(shù)方程求兩圓的公共弦長|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), ,已知曲線在點(diǎn)處的切線與直線平行.
(Ⅰ)若方程在內(nèi)存在唯一的根,求出的值;
(Ⅱ)設(shè)函數(shù)(表示中的較小值),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),A,B是曲線上兩個不同的點(diǎn).
(Ⅰ)求的單調(diào)區(qū)間,并寫出實(shí)數(shù)的取值范圍;
(Ⅱ)證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一個三角形的平行投影仍是三角形,則下列命題:
①三角形的高線的平行投影,一定是這個三角形的平行投影的高線;
②三角形的中線的平行投影,一定是這個三角形的平行投影的中線;
③三角形的角平分線的平行投影,一定是這個三角形的平行投影的角平分線;
④三角形的中位線的平行投影,一定是這個三角形的平行投影的中位線.
其中正確的命題有 ( )
A. ①② B. ②③
C. ③④ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓(),以橢圓內(nèi)一點(diǎn)為中點(diǎn)作弦,設(shè)線段的中垂線與橢圓相交于, 兩點(diǎn).
(Ⅰ)求橢圓的離心率;
(Ⅱ)試判斷是否存在這樣的,使得, , , 在同一個圓上,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐P—ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知BD=2AD=8,AB=2DC=4.
(1)設(shè)M是PC上的一點(diǎn),求證:平面MBD⊥平面PAD;
(2)求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分別根據(jù)下列條件,求對應(yīng)雙曲線的標(biāo)準(zhǔn)方程.
(1)右焦點(diǎn)為,離心率;
(2)實(shí)軸長為4的等軸雙曲線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com