【題目】已知拋物線與直線相切于點,點關(guān)于軸對稱.

1)求拋物線的方程及點的坐標;

2)設(shè)軸上兩個不同的動點,且滿足,直線、與拋物線的另一個交點分別為試判斷直線與直線的位置關(guān)系,并說明理由.如果相交,求出的交點的坐標.

【答案】1,;(2,詳見解析.

【解析】

1)聯(lián)立方程組,整理得,根據(jù),求得,得到拋物線的方程,進而得到點的坐標,從而求得點的坐標.

2)設(shè),直線的方程為,得出的方程為,

代入,求得,進而得到,代入拋物線的方程求得的坐標,利用斜率公式,即可得到結(jié)論.

1)由題意,拋物線與直線相切于點,

聯(lián)立方程組,消去,得,

所以,解得,

,解得,所以拋物線的方程為

,得,所以切點為,

因為點關(guān)于軸對稱,點的坐標

2)直線,理由如下:

依題意,直線的斜率不為,

設(shè),直線的方程為,

由(1)知點,則,所以直線的方程為,

代入,解得(),所以,

因為,所以關(guān)于對稱,得,

同理得的方程為,代入,

,,

直線的斜率為,因此

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)sin(ωx+φ)cos(ωx+φ)(0<φ<π,ω>0)為偶函數(shù),且y=f(x)圖象的兩相鄰對稱軸間的距離為,則f()的值為( )

A.1B.1C..D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列、中,,,且,,設(shè)數(shù)列的前項和分別為.

1)若數(shù)列是等差數(shù)列,求

2)若數(shù)列是公比為2的等比數(shù)列.

①求;

②是否存在實數(shù),使對任意自然數(shù)都成立?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別是,點是橢圓上除長軸端點外的任一點,連接,設(shè)的內(nèi)角平分線的長軸于點

(Ⅰ)求實數(shù)的取值范圍;

(Ⅱ)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,求的取值范圍;

2)若存在唯一的極小值點,求的取值范圍,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有甲,乙兩種不透明充氣包裝的袋裝零食,每袋零食甲隨機附贈玩具,,中的一個,每袋零食乙從玩具,中隨機附贈一個.記事件:一次性購買袋零食甲后集齊玩具,,;事件:一次性購買袋零食乙后集齊玩具,.

1)求概率;

2)已知,其中為常數(shù),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知等邊的邊長為3,點,分別是邊上的點,且.如圖2,將沿折起到的位置.

1)求證:平面平面;

2)給出三個條件:①;②二面角大小為;③到平面的距離為.在中任選一個,補充在下面問題的條件中,并作答:

在線段上是否存在一點,使三棱錐的體積為,若存在,求出的值;若不存在,請說明理由.

注:如果多個條件分別解答,按第一個解答給分。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,三棱錐SABC中,△ABC與△SBC都是邊長為1的正三角形,二面角ABCS的大小為,若S,A,B,C四點都在球O的表面上,則球O的表面積為(

A.πB.πC.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,焦點在軸上的橢圓與焦點在軸上的橢圓都過點中心都在坐標原點,且橢圓的離心率均為

求橢圓與橢圓的標準方程;

Ⅱ)過點M的互相垂直的兩直線分別與,交于點A,B(點A、B不同于點M),當的面積取最大值時,求兩直線MA,MB斜率的比值.

查看答案和解析>>

同步練習(xí)冊答案