【題目】(本小題滿分13分)已知數(shù)列的前項(xiàng)和為, ,且是與的等差中項(xiàng).
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)若數(shù)列的前項(xiàng)和為,且對(duì),恒成立,求實(shí)數(shù)的最小值.
【答案】(1),(2).
【解析】
試題分析:(Ⅰ)利用待定系數(shù)法,求出基本量即可,因?yàn)?/span> , 所以 ,因 是與的等差中項(xiàng),所以 ,,故是以1為首項(xiàng),2為公比的等比數(shù)列.;(Ⅱ)由(Ⅰ)可得是以1為首項(xiàng), 為公比的等比數(shù)列,從而,所以 .若對(duì),恒成立,則.
試題解析:(Ⅰ)因?yàn)?/span> ,
所以 . 1分
因?yàn)?/span> 是與的等差中項(xiàng),
所以 , 即.
所以 . 3分
所以 是以1為首項(xiàng),2為公比的等比數(shù)列.
所以 . 6分
(Ⅱ)由(Ⅰ)可得:.
所以 , .
所以 是以1為首項(xiàng), 為公比的等比數(shù)列. 9分
所以 數(shù)列的前項(xiàng)和. 11分
因?yàn)?/span> ,
所以 .
若,當(dāng)時(shí),.
所以 若對(duì),恒成立,則.
所以 實(shí)數(shù)的最小值為2. 13分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省電視臺(tái)為了解該省衛(wèi)視一檔成語類節(jié)目的收視情況,抽查東西兩部各5個(gè)城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示,其中一個(gè)數(shù)字被污損.
(I)求東部觀眾平均人數(shù)超過西部觀眾平均人數(shù)的概率.
(II)節(jié)目的播出極大激發(fā)了觀眾隨機(jī)統(tǒng)計(jì)了4位觀眾的周均學(xué)習(xí)成語知識(shí)的的時(shí)間y (單位:小時(shí))與年齡x(單位:歲),并制作了對(duì)照表(如下表所示):
由表中數(shù)據(jù)分析,x,y呈線性相關(guān)關(guān)系,試求線性回歸方程,并預(yù)測(cè)年齡為60歲觀眾周均學(xué)習(xí)成語知識(shí)的時(shí)間.
參考數(shù)據(jù):線性回歸方程中的最小二乘估計(jì)分別是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位計(jì)劃在一水庫建一座至多安裝3臺(tái)發(fā)電機(jī)的水電站,過去50年的水文資料顯示,水庫年入流量(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和,單位:億立方米)都在40以上,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年,將年入流量在以上三段的頻率作為相應(yīng)段的概率,假設(shè)各年的年入流量相互獨(dú)立.
(1)求未來3年中,設(shè)表示流量超過120的年數(shù),求的分布列及期望;
(2)水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行,但每年發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù)受年入流量限制,并有如下關(guān)系:
年入流量 | |||
發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù) | 1 | 2 | 3 |
若某臺(tái)發(fā)電機(jī)運(yùn)行,則該臺(tái)年利潤(rùn)為5000萬元,若某臺(tái)發(fā)電機(jī)未運(yùn)行,則該臺(tái)年虧損800萬元,欲使水電站年總利潤(rùn)的均值達(dá)到最大,應(yīng)安裝發(fā)電機(jī)多少臺(tái)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐A-BCD中,△ABC是等腰直角三角形,且AC⊥BC,BC=2,AD⊥平面BCD,AD=1.
(1)求證:平面ABC⊥平面ACD;
(2)若E為AB中點(diǎn),求點(diǎn)A到平面CED的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若在處取極值,求在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),若有唯一的零點(diǎn),求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在圓上, 的坐標(biāo)分別為, ,線段的垂直平分線交線段于點(diǎn)
(1)求點(diǎn)的軌跡的方程;
(2)設(shè)圓與點(diǎn)的軌跡交于不同的四個(gè)點(diǎn),求四邊形的面積的最大值及相應(yīng)的四個(gè)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市垃圾處理站每月的垃圾處理量最少為400噸,最多為600噸,月處理成本(元)與月垃圾處理量(噸)之間的函數(shù)關(guān)系可近似地表示為,且每處理一噸垃圾得到可利用的資源值為100元.
(1)該站每月垃圾處理量為多少噸時(shí),才能使每噸垃圾的平均處理成本最低?
(2)該站每月能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則需要市財(cái)政補(bǔ)貼,至少補(bǔ)貼多少元才能使該站不虧損?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】園林管理處擬在公園某區(qū)域規(guī)劃建設(shè)一半徑為米,圓心角為(弧度)的扇形觀景水池,其中, 為扇形的圓心,同時(shí)緊貼水池周邊(即: 和所對(duì)的圓弧)建設(shè)一圈理想的無寬度步道.要求總預(yù)算費(fèi)用不超過24萬元,水池造價(jià)為每平方米400元,步道造價(jià)為每米1000元.
(1)若總費(fèi)用恰好為24萬元,則當(dāng)和分別為多少時(shí),可使得水池面積最大,并求出最大面積;
(2)若要求步道長(zhǎng)為105米,則可設(shè)計(jì)出的水池最大面積是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com