7.我國(guó)數(shù)學(xué)史上有一部堪與歐幾里得《幾何原本》媲美的書,這就是歷來被尊為算經(jīng)之首的《九章算術(shù)》,其中卷第七《盈不足》有一道關(guān)于等比數(shù)列求和試題:“今有蒲生一日,長(zhǎng)三尺.莞生一日,長(zhǎng)一尺.蒲生日自半,莞生日自倍.問幾何日而長(zhǎng)等?”其意思是:今有蒲生1日,長(zhǎng)3尺.莞生1日,長(zhǎng)1尺.蒲的生長(zhǎng)逐日減其一半,莞的生長(zhǎng)逐日增加1倍,問幾日蒲(水生植物名)、莞(植物名)長(zhǎng)度相等.試估計(jì)3日蒲、莞長(zhǎng)度相等(結(jié)果采取“只入不舍”原則取整數(shù),相關(guān)數(shù)據(jù):lg3≈0.4771,lg2≈0.3010)

分析 設(shè)蒲(水生植物名)的長(zhǎng)度組成等比數(shù)列{an},其a1=3,公比為$\frac{1}{2}$,其前n項(xiàng)和為An.莞(植物名)的長(zhǎng)度組成等比數(shù)列{bn},其b1=1,公比為2,其前n項(xiàng)和為Bn.利用等比數(shù)列的前n項(xiàng)和公式及其對(duì)數(shù)的運(yùn)算性質(zhì)即可得出.

解答 解:設(shè)蒲(水生植物名)的長(zhǎng)度組成等比數(shù)列{an},其a1=3,公比為$\frac{1}{2}$,其前n項(xiàng)和為An.莞(植物名)的長(zhǎng)度組成等比數(shù)列{bn},其b1=1,公比為2,其前n項(xiàng)和為Bn
則An=$\frac{3(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$,Bn=$\frac{{2}^{n}-1}{2-1}$,
令$\frac{3(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=$\frac{{2}^{n}-1}{2-1}$,
化為:2n+$\frac{6}{{2}^{n}}$=7,
解得2n=6,2n=1(舍去).
∴n=$\frac{lg6}{lg2}$=1+$\frac{lg3}{lg2}$≈2.6.
取n=3.
∴估計(jì)3日蒲、莞長(zhǎng)度相等,
故答案為:3.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、對(duì)數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.運(yùn)行如圖所示的偽代碼,其輸出的結(jié)果S為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知定義在R上的偶函數(shù)f(x)滿足f(x+4)=f(x)+f(2),且當(dāng)x∈[0,2]時(shí),y=f(x)單調(diào)遞減,給出以下四個(gè)命題:
①f(2)=0;    
②y=f(x)在[8,10]單調(diào)遞增;
③x=4為函數(shù)y=f(x)圖象的一條對(duì)稱軸; 
④若方程f(x)=m在[-6,-2]上的兩根為x1,x2,則x1+x2=-8
以上命題中不正確命題的序號(hào)為  ( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.電視臺(tái)組織中學(xué)生知識(shí)競(jìng)賽,共設(shè)有5個(gè)版塊的試題,主題分別是:立德樹人、社會(huì)主義核心價(jià)值觀、依法治國(guó)理念、中國(guó)優(yōu)秀傳統(tǒng)文化、創(chuàng)新能力.某參賽隊(duì)從中任選2個(gè)主題作答,則“立德樹人”主題被該隊(duì)選中的概率是$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.我國(guó)數(shù)學(xué)史上有一部堪與歐幾里得《幾何原本》媲美的書,這就是歷來被尊為算經(jīng)之首的《九章算術(shù)》,其中卷第五《商功》有一道關(guān)于圓柱體的體積試題:今有圓堡,周四丈八尺,高一丈一尺,問積幾何?其意思是:含有圓柱形的土筑小城堡,底面周長(zhǎng)是4丈8尺,高1丈1尺,問它的體積是多少?若π取3,估算小城堡的體積為( 。
A.1998立方尺B.2012立方尺C.2112立方尺D.2324立方尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知x,y滿足$\left\{\begin{array}{l}x+2y-3≤0\\ x+3y-3≥0\\ y≤1\end{array}\right.$,z=2x+y的最大值為m,若正數(shù)a,b滿足a+b=m,則$\frac{1}{a}+\frac{4}$的最小值為( 。
A.3B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)$f(x)=cos(ln\frac{x-1}{x+1})$的圖象大致為( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知雙曲線Г:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)經(jīng)過點(diǎn)P(2,1),且其中一焦點(diǎn)F到一條漸近線的距離為1.
(Ⅰ)求雙曲線Г的方程;
(Ⅱ)過點(diǎn)P作兩條相互垂直的直線PA,PB分別交雙曲線Г于A、B兩點(diǎn),求點(diǎn)P到直線AB距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)y=mx+1(x∈R),與y=$\frac{x}{2}$-n(n∈R)互為反函數(shù)的充要條件是m=2,n=$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案