17.已知{an}是公差為1的等差數(shù)列,Sn為{an}的前n項和,若S8=4S4,則a10=$\frac{19}{2}$.

分析 利用等差數(shù)列的通項公式及其前n項和公式即可得出

解答 解:∵{an}是公差為1的等差數(shù)列,S8=4S4,
∴8${a}_{1}+\frac{8×7}{2}×1$=4×(4a1+$\frac{4×3}{2}$×1),
解得a1=$\frac{1}{2}$.
則a10=$\frac{1}{2}$+9×1=$\frac{19}{2}$.
故答案為:$\frac{19}{2}$.

點評 本題考查了等差數(shù)列的通項公式及其前n項和公式,考查了推理能力與計算能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知A={x||x-1|>0},B={x|(x-1)2-3≥0},則A∩B=( 。
A.(-∞,0)∪(2,+∞)B.(-∞,1-$\sqrt{3}$]∪[1+$\sqrt{3}$,+∞)C.(-∞,1-$\sqrt{3}$]∪[2,+∞)D.(-∞,0)∪[1+$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=cosωx(ω>0)向右平移$\frac{π}{3}$得到圖象與原圖重合,則ω的最小值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.不等式$\frac{2x-1}{1+3x}$≤1的解集為M,函數(shù)f(x)=lg$\frac{4+x}{4-x}$的定義域為N,則M∩N=(-$\frac{1}{3}$,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知拋物線x2=2py(p>0)的焦點與雙曲線x2-y2=-$\frac{1}{2}$的一個焦點重合;且在拋物線上有一動點P到x軸的距離為m,P到直線l:2x-y-4=0的距離為n,則m+n的最小值為$\sqrt{5}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求不等式x2-3x+5>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.計算
(1)$\sqrt{11-2\sqrt{30}}$;
(2)$\sqrt{4x+\frac{1}{x}-4}$ (其中x>1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.給出如下表示:①{1}∈{0,1,2};②{1,-3}={-3,1};③{0,1,2}?{1,0,2};④∅∈{0},其中錯誤表示的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)y=${x}^{-\frac{2}{3}}$定義域是{x|x≠0},值域是{y|y>0};奇偶性:偶函數(shù),單調(diào)區(qū)間(-∞,0),(0,+∞).

查看答案和解析>>

同步練習(xí)冊答案