12.已知tanα=2,求下列各式的值:
(1)$\frac{2sinα+cosα}{5sinα-3cosα}$;
(2)$\frac{2si{n}^{2}α-3sinα•cosα}{4si{n}^{2}α-7co{s}^{2}α}$;
(3)$\frac{3}{4}$sin2α+$\frac{2}{5}$cos2α

分析 利用同角的三角函數(shù)關(guān)系,把正弦、余弦的比值化為正切tanα,即可求出各式的值.

解答 解:由于:tanα=2,
(1)$\frac{2sinα+cosα}{5sinα-3cosα}$=$\frac{2tanα+1}{5tanα-3}$=$\frac{2×2+1}{5×2-3}$=$\frac{5}{7}$;
(2)$\frac{2si{n}^{2}α-3sinα•cosα}{4si{n}^{2}α-7co{s}^{2}α}$=$\frac{2ta{n}^{2}α-3tanα}{4ta{n}^{2}α-7}$=$\frac{2×{2}^{2}-3×2}{4×{2}^{2}-7}$=$\frac{2}{9}$;
(3)$\frac{3}{4}$sin2α+$\frac{2}{5}$cos2α=$\frac{\frac{3}{4}si{n}^{2}α+\frac{2}{5}co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$=$\frac{\frac{3}{4}ta{n}^{2}α+\frac{2}{5}}{ta{n}^{2}α+1}$=$\frac{\frac{3}{4}×{2}^{2}+\frac{2}{5}}{{2}^{2}+1}$=$\frac{17}{25}$.

點(diǎn)評(píng) 本題考查了同角的三角函數(shù)關(guān)系的應(yīng)用問(wèn)題,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè){an}是等差數(shù)列,a1+a3+a5=9,a6=9,則這個(gè)數(shù)列的前8項(xiàng)和等于( 。
A.12B.24C.36D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.“數(shù)列{an}為等比數(shù)列”是“an=3n(n∈N*)的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,在四面體ABCD中,已知AB⊥AC,BD⊥AC,那么D在面ABC內(nèi)的射影H必在( 。
A.直線AB上B.直線BC上C.直線AC上D.△ABC內(nèi)部

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,直三棱柱ABC-A1B1C1中,AC=BC=AA1=3,AC⊥BC,點(diǎn)M在線段AB上.
(1)若M是AB中點(diǎn),證明AC1∥平面B1CM;
(2)當(dāng)BM長(zhǎng)是多少時(shí),三棱錐B1-BCM的體積是三棱柱ABC-A1B1C1的體積的$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.甲、乙兩名同學(xué)在5次英語(yǔ)口語(yǔ)測(cè)試中的成績(jī)統(tǒng)計(jì)如下面的莖葉圖所示.
(Ⅰ)現(xiàn)要從中選派一人參加英語(yǔ)口語(yǔ)競(jìng)賽,從統(tǒng)計(jì)學(xué)角度,你認(rèn)為派哪位學(xué)生參加更保險(xiǎn),請(qǐng)說(shuō)明理由;
(Ⅱ)用簡(jiǎn)單隨機(jī)抽樣方法從甲的這5次測(cè)試成績(jī)中抽取2次,它們的得分組成一個(gè)樣本,求該樣本平均數(shù)與總體平均數(shù)之差的絕對(duì)值不超過(guò)2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.剛剛結(jié)束的奧運(yùn)會(huì)女排決賽,中國(guó)隊(duì)3:1戰(zhàn)勝塞爾維亞隊(duì),勇奪冠軍,這場(chǎng)比賽吸引了大量觀眾進(jìn)入球迷吧看現(xiàn)場(chǎng)直播,不少是女球迷,根據(jù)某體育球迷社區(qū)統(tǒng)計(jì),在“球色伊人”球迷吧,共有40名球迷觀看,其中20名女球迷;在“鐵漢柔情”球迷吧,共有30名球迷觀看,其中10名是女球迷.
(Ⅰ)從兩個(gè)球迷吧當(dāng)中所有的球迷中按分層抽樣方法抽取7個(gè)球迷做興趣咨詢.
①在“球色伊人”球迷吧男球迷中抽取多少個(gè)?
②若從7個(gè)球迷中抽取兩個(gè)球迷進(jìn)行咨詢,求這兩個(gè)球迷恰來(lái)自于不同球迷吧且均屬女球迷的概率;
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
(Ⅱ)根據(jù)以上數(shù)據(jù),能否有85%的把握認(rèn)為男球迷或女球迷進(jìn)球迷吧觀看比賽的動(dòng)機(jī)與球迷吧取名有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.對(duì)函數(shù)x∈R,函數(shù)f(x)滿足:f(x+1)=$\sqrt{f(x)-f^2(x)}$+$\frac{1}{2}$,an=f2(n)-f(n),數(shù)列{an}的前15項(xiàng)和為$-\frac{31}{16}$,則f(1)+f(2)+…+f(1000)的值為$\frac{575+125\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=ex-ax-1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≥0對(duì)任意的x∈R恒成立,求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案