7.如圖,直三棱柱ABC-A1B1C1中,AC=BC=AA1=3,AC⊥BC,點(diǎn)M在線段AB上.
(1)若M是AB中點(diǎn),證明AC1∥平面B1CM;
(2)當(dāng)BM長(zhǎng)是多少時(shí),三棱錐B1-BCM的體積是三棱柱ABC-A1B1C1的體積的$\frac{1}{9}$.

分析 (1)連結(jié)BC1,交B1C于E,連結(jié)ME,根據(jù)中位線定理得出AC1∥EM,故而AC1∥平面B1CM;
(2)根據(jù)棱錐和棱柱的體積公式可知S△BCM=$\frac{1}{3}$S△ABC,故而B(niǎo)M=$\frac{1}{3}$AB.

解答 證明:(1)連結(jié)BC1,交B1C于E,連結(jié)ME.
∵側(cè)面B B1C1C為矩形,
∴E為BC1的中點(diǎn),又M是AB的中點(diǎn),
∴ME∥AC1
又 ME?平面B1CM,AC1?平面B1CM,
∴AC1∥平面B1C M.
(2)∵V${\;}_{{B}_{1}-BCM}$=$\frac{1}{3}{S}_{△BCM}•B{B}_{1}$,V${\;}_{ABC-{A}_{1}{B}_{1}{C}_{1}}$=S△ABC•BB1
V${\;}_{{B}_{1}-BCM}$=$\frac{1}{9}$V${\;}_{ABC-{A}_{1}{B}_{1}{C}_{1}}$,
∴S△BCM=$\frac{1}{3}$S△ABC,∴BM=$\frac{1}{3}$AB,
∵AC=BC=3,AC⊥BC,∴AB=3$\sqrt{2}$,
∴當(dāng)BM=$\sqrt{2}$時(shí),三棱錐B1-BCM的體積是三棱柱ABC-A1B1C1的體積的$\frac{1}{9}$.

點(diǎn)評(píng) 本題考查了線面平行的判定,棱錐的體積公式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.曲線y=$\frac{1}{3}$x3-x2+2x的所有切線中,斜率最小的切線的方程為3x-3y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知p為拋物線y2=2x的一點(diǎn),若B(1,1),則|PB|+|PF|的最小值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{3x-y-1≥0}\\{x+y-2≤0}\\{3x-6y-4≤0}\end{array}\right.$,則z=3x+y的最小值為-$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.直線l經(jīng)過(guò)點(diǎn)P(1,1)且與線C:y=x3相切,若直線l不經(jīng)過(guò)第四象限,則直線l方程是3x-4y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知tanα=2,求下列各式的值:
(1)$\frac{2sinα+cosα}{5sinα-3cosα}$;
(2)$\frac{2si{n}^{2}α-3sinα•cosα}{4si{n}^{2}α-7co{s}^{2}α}$;
(3)$\frac{3}{4}$sin2α+$\frac{2}{5}$cos2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知高為2的直四棱柱,其俯視圖是一個(gè)面積為1的正方形,則該直四棱柱的正視圖的面積不可能等于( 。
A.2B.2$\sqrt{2}$C.$\sqrt{2}$-1D.$\sqrt{2}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.一個(gè)平面圖形由紅、黃兩種顏色填涂,開(kāi)始時(shí),紅色區(qū)域的面積為$\frac{3}{2}$,黃色區(qū)域的面積為$\frac{1}{2}$.現(xiàn)對(duì)圖形的顏色格局進(jìn)行改變,每次改變都把原有紅色區(qū)域的$\frac{1}{3}$改涂成黃色,原有黃色區(qū)域的$\frac{1}{3}$改涂成紅色,其他不變,經(jīng)過(guò)4次改變后,這個(gè)圖形中紅色區(qū)域的面積是$\frac{88}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.求函數(shù)y=$\frac{2x}{1+{x}^{2}}$的極值點(diǎn)和極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案