【題目】定義f(x)={x}(其中{x}表示不小于x的最小整數(shù))為“取上整函數(shù)”,例如{2.1}=3,{4}=4.以下關(guān)于“取上整函數(shù)”性質(zhì)的描述,正確的是( ) ①f(2x)=2f(x);
②若f(x1)=f(x2),則x1﹣x2<1;
③任意x1 , x2∈R,f(x1+x2)≤f(x1)+f(x2);

A.①②
B.①③
C.②③
D.②④

【答案】C
【解析】解:對(duì)于①,當(dāng)x=1.4時(shí),f(2x)=f(2.8)=3.2,f(1.4)=4.所以f(2x)≠2f(x);①錯(cuò). 對(duì)于②,若f(x1)=f(x2).當(dāng)x1為整數(shù)時(shí),f(x1)=x1 , 此時(shí)x2>x1﹣1,即x1﹣x2<1.當(dāng)x1不是整數(shù)時(shí),f(x1)=[x1]+1.[x1]表示不大于x1的最大整數(shù).x2表示比x1的整數(shù)部分大1的整數(shù)或者是和x1保持相同整數(shù)的數(shù),此時(shí)﹣x1﹣x2<1.故②正確.
對(duì)于③,當(dāng)x1 , x2∈Z,f(x1+x2)=f(x1)+f(x2),當(dāng)x1 , x2Z,f(x1+x2)<f(x1)+f(x2),故正確;
對(duì)于④,舉例f(1.2)+f(1.2+0.5)=4≠f(2.4)=3.故④錯(cuò)誤.
故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A={(x,y)|y=x2+2bx+1},B={(x,y)|y=2a(x+b)},且A∩B是單元素集合,若存在a<0,b<0使點(diǎn)P∈{(x,y)|(x﹣a)2+(y﹣b)2≤1},則點(diǎn)P所在的區(qū)域的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,a2=3,若|an+1﹣an|=2n(n∈N*),且{a2n1}是遞增數(shù)列、{a2n}是遞減數(shù)列,則 =

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)雙曲線C: ,F(xiàn)1 , F2為其左右兩個(gè)焦點(diǎn).
(1)設(shè)O為坐標(biāo)原點(diǎn),M為雙曲線C右支上任意一點(diǎn),求 的取值范圍;
(2)若動(dòng)點(diǎn)P與雙曲線C的兩個(gè)焦點(diǎn)F1 , F2的距離之和為定值,且cos∠F1PF2的最小值為 ,求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PB、PD與
平面ABCD所成的角依次是 ,AP=2,E、F依次是PB、PC的中點(diǎn);

(1)求異面直線EC與PD所成角的大小;(結(jié)果用反三角函數(shù)值表示)
(2)求三棱錐P﹣AFD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓C: 過(guò)點(diǎn)M(2,0),且右焦點(diǎn)為F(1,0),過(guò)F的直線l與橢圓C相交于A,B兩點(diǎn).設(shè)點(diǎn)P(4,3),記PA,PB的斜率分別為k1和k2

(1)求橢圓C的方程;
(2)如果直線l的斜率等于﹣1,求出k1k2的值;
(3)探討k1+k2是否為定值?如果是,求出該定值;如果不是,求出k1+k2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)F1、F2為雙曲線C:x2 =1的左、右焦點(diǎn),過(guò)F2作垂直于x軸的直線,在x軸上方交雙曲線C于點(diǎn)M,∠MF1F2=30°.
(1)求雙曲線C的方程;
(2)過(guò)雙曲線C上任意一點(diǎn)P作該雙曲線兩條漸近線的垂線,垂足分別為P1、P2 , 求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖程序框圖,如果輸入的a=4,b=6,那么輸出的n=( 。

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是奇函數(shù),當(dāng)x<0,f(x)=﹣x2+x,若不等式f(x)﹣x≤2logax(a>0且a≠1)對(duì)x∈(0, ]恒成立,則實(shí)數(shù)a的取值范圍是(
A.(0, ]
B.[ ,1)
C.(0, ]
D.[ , ]∪(1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案