已知x∈R,f(x)表示x+1,
x
2
,3-2x中最小的一個,求函數(shù)f(x)的解析式和最大值.
考點:函數(shù)的最值及其幾何意義,函數(shù)解析式的求解及常用方法
專題:計算題,數(shù)形結合
分析:先分別畫出x+1,
x
2
,3-2x的圖象,然后取最小的那段,從而可得函數(shù)(x)的解析式,結合圖象可得最大值.
解答: 解:

f(x)=
x+1,x<-2
x
2
,-2≤x≤
6
5
3-2x,x>
6
5
,最大值為f(
6
5
)=
3
5
點評:本題主要考查了分段函數(shù)的圖象,同時考查了分段函數(shù)的最值得求解,以及運算求解的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

過橢圓
x2
2
+y2=1的一個焦點F作直線l交橢圓于點A、B兩點,橢圓的中心為O,當△AOB面積最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2014世界園藝博覽會在青島舉行,某展銷商在此期間銷售一種商品,根據(jù)市場調查,當每套商品售價為x元時,銷量可以達到15-0.1x萬套,供貨商把該產(chǎn)品的供貨價格分為兩部分,其中固定價格為每套30元,浮動價格與銷量(單位:萬套)成反比,比例系數(shù)為k,假設不計其它成本,即每套產(chǎn)品銷售利潤=售價-供貨價格.
(1)若售價為50元時,展銷商的總利潤為180萬元,求售價為100元時的銷售總利潤;
(2)若k=10,求銷售這套商品總利潤的函數(shù)f(x),并求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對向量
a
=(a1,a2),
b
=(b1,b2)定義一種運算“⊕”:a?b=(a1,a2)⊕(b1,b2)=(a1b1,a2b2),已知動點P,Q分別在曲線y=sinx和y=f(x)上運動,且
OQ
=m⊕
Op
+m(其中O為坐標原點),若向量
m
=(
1
2
,3),
n
=(
π
6
,0),則y=f(x)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知符號函數(shù)sgn=
1(x>0)
0(x=0)
-1(x<1)
則函數(shù)f(x)=sgn(ln x)-ln2x的零點個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若奇函數(shù)f(x)在區(qū)間[2,5]上的最小值是5,那么f(-x)在區(qū)間[-5,-2]上有( 。
A、最小值-5B、最小值5
C、最大值-5D、最大值5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1+x
+
1-x

(1)求函數(shù)f(x)的定義域并判斷函數(shù)的奇偶性;
(2)設F(x)=m
1-x2
+f(x),若記f(x)=t,求函數(shù)F(x)的最大值的表達式g(m).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方體ABCD-A1B1C1D1中,P,Q分別是線段(不包括端點)CC1,BD上的點,PQ∥ABC1D1,記CP=x,四面體PQA1B1的體積為y,則y關于x的函數(shù)大致圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義域為R的偶函數(shù),且對任意實數(shù)x,恒有f(x+1)=-f(x),已知x∈(0,1)時,f(x)=log
1
2
(1-x),則函數(shù)f(x)在(1,2)上(  )
A、是增函數(shù),且f(x)<0
B、是增函數(shù),且f(x)>0
C、是減函數(shù),且f(x)<0
D、是減函數(shù),且f(x)>0

查看答案和解析>>

同步練習冊答案