8.為了了解某同學(xué)的數(shù)學(xué)學(xué)習(xí)情況,對(duì)他的6次數(shù)學(xué)測(cè)試成績(jī)(滿分100分)進(jìn)行統(tǒng)計(jì),作出的莖葉圖如圖所示,則該同學(xué)數(shù)學(xué)成績(jī)的中位數(shù)為84.

分析 根據(jù)莖葉圖中的數(shù)據(jù),計(jì)算數(shù)據(jù)的中位數(shù)即可.

解答 解:根據(jù)莖葉圖,得到6次數(shù)學(xué)成績(jī)?yōu)椋?8,83,83,85,90,91,中位數(shù)是$\frac{83+85}{2}$=84,
故答案為:84.

點(diǎn)評(píng) 本題考查了莖葉圖的應(yīng)用問題,解題時(shí)應(yīng)根據(jù)莖葉圖中的數(shù)據(jù)進(jìn)行有關(guān)的計(jì)算,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知數(shù)列{an}中,a1=3,a2=5,且對(duì)于任意的大于2的正整數(shù)n,有an=an-1-an-2,則a2015=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知定義在R上的奇函數(shù)f(x)滿足f(x-2)=-f(x),則f(2006)的值為(  )
A.2006B.1003C.0D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=kx+m,當(dāng)x∈[a1,b1]時(shí),f(x)的值域?yàn)閇a2,b2],當(dāng)x∈[a2,b2]時(shí),f(x)的值域?yàn)閇a3,b3],依此類推,一般地,當(dāng)x∈[an-1,bn-1]時(shí),f(x)的值域?yàn)閇an,bn],其中k、m為常數(shù),且a1=0,b1=1.
(1)若k=1,求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若m=2,問是否存在常數(shù)k>0,使得數(shù)列{bn}滿足$\underset{lim}{n→∞}$bn=4?若存在,求k的值;若不存在,請(qǐng)說明理由;
(3)若k<0,設(shè)數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,求(T1+T2+…+T2014)-(S1+S2+…+S2014).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,數(shù)軸x,y的交點(diǎn)為O,夾角為θ,與x軸、y軸正向同向的單位向量分別是$\overrightarrow{e_1},\overrightarrow{e_2}$.由平面向量基本定理,對(duì)于平面內(nèi)的任一向量$\overrightarrow{OP}$,存在唯一的有序?qū)崝?shù)對(duì)(x,y),使得$\overrightarrow{OP}=x\overrightarrow{e_1}+y\overrightarrow{e_2}$,我們把(x,y)叫做點(diǎn)P在斜坐標(biāo)系xOy中的坐標(biāo)(以下各點(diǎn)的坐標(biāo)都指在斜坐標(biāo)系xOy中的坐標(biāo)).
(1)若θ=90°,$\overrightarrow{OP}$為單位向量,且$\overrightarrow{OP}$與$\overrightarrow{e_1}$的夾角為120°,求點(diǎn)P的坐標(biāo);
(2)若θ=45°,點(diǎn)P的坐標(biāo)為$({1,\sqrt{2}})$,求向量$\overrightarrow{OP}$與$\overrightarrow{e_1}$的夾角;
(3)若θ=60°,求過點(diǎn)A(2,1)的直線l的方程,使得原點(diǎn)O到直線l的距離最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}的首項(xiàng)a1=$\frac{3}{4}$,an+1=$\frac{3{a}_{n}}{2{a}_{n}+1}$,n=1,2,3…
(1)證明:數(shù)列{$\frac{1}{{a}_{n}}$-1}是等比數(shù)列;
(2)是否存在互不相等的正整數(shù)m,s,t成等差數(shù)列,且am-1,as-1,at-1成等比數(shù)列?如果存在,求出所有符合條件的m,s,t,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知集合$A=\left\{{x\left|{\frac{{{x^2}-x-6}}{x+1}≤0}\right.}\right\}$,集合B={x||x+2a|≤a+1,a∈R}.
(1)求集合A與集合B;
(2)若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.圓心在直線2x+y=0上,且與直線x-y+1=0切與點(diǎn)P(2,-1)的圓的標(biāo)準(zhǔn)方程(x-1)2+(y+2)2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知點(diǎn)P為圓C:x2+y2-4x-4y+4=0上的動(dòng)點(diǎn),點(diǎn)P到某直線l的最大距離為5,若在直線l上任取一點(diǎn)A作圓C的切線AB,切點(diǎn)為B,則AB的最小值是$\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案