分析 (1)設(shè)出P點(diǎn)坐標(biāo),結(jié)合$\overrightarrow{OP}$為單位向量,且$\overrightarrow{OP}$與$\overrightarrow{e_1}$的夾角為120°列式求解;
(2)由題意求出$|\overrightarrow{OP}|$,$\overrightarrow{OP}•\overrightarrow{{e}_{1}}$,代入數(shù)量積求夾角公式得答案;
(3)由題意得到A在直角坐標(biāo)系和斜坐標(biāo)系下坐標(biāo)的關(guān)系,求出直角坐標(biāo)系下名字條件的直線方程,轉(zhuǎn)化為斜坐標(biāo)系下得答案.
解答 解:(1)若θ=90°,$\overrightarrow{OP}$為單位向量,且$\overrightarrow{OP}$與$\overrightarrow{e_1}$的夾角為120°,
設(shè)P(x,y),則x2+y2=1,且cos120°=($x\overrightarrow{{e}_{1}}+y\overrightarrow{{e}_{2}}$)$•\overrightarrow{{e}_{1}}$=x,
∴x=-$\frac{1}{2}$,代入x2+y2=1,得y=$±\frac{\sqrt{3}}{2}$.
可得P$({-\frac{1}{2},±\frac{{\sqrt{3}}}{2}})$;
(2)若θ=45°,點(diǎn)P的坐標(biāo)為$({1,\sqrt{2}})$,則$\overrightarrow{OP}=\overrightarrow{{e}_{1}}+\sqrt{2}\overrightarrow{{e}_{2}}$,
∴$|\overrightarrow{OP}{|}^{2}=(\overrightarrow{{e}_{1}}+\sqrt{2}\overrightarrow{{e}_{2}})^{2}=|\overrightarrow{{e}_{1}}{|}^{2}+2\sqrt{2}|\overrightarrow{{e}_{1}}||\overrightarrow{{e}_{2}}|cos45°$$+2|\overrightarrow{{e}_{2}}{|}^{2}$=$1+2\sqrt{2}×\frac{\sqrt{2}}{2}+2=5$,
∴$|\overrightarrow{OP}|=\sqrt{5}$,
又$\overrightarrow{OP}•\overrightarrow{{e}_{1}}=(\overrightarrow{{e}_{1}}+\sqrt{2}\overrightarrow{{e}_{2}})•\overrightarrow{{e}_{1}}=|\overrightarrow{{e}_{1}}{|}^{2}$$+\sqrt{2}|\overrightarrow{{e}_{1}}||\overrightarrow{{e}_{2}}|cos45°$=$1+\sqrt{2}×\frac{\sqrt{2}}{2}=2$,
設(shè)向量$\overrightarrow{OP}$與$\overrightarrow{e_1}$的夾角為α,則$cosα=\frac{\overrightarrow{OP}•\overrightarrow{{e}_{1}}}{|\overrightarrow{OP}||\overrightarrow{{e}_{1}}|}$=$\frac{2}{\sqrt{5}×1}=\frac{2\sqrt{5}}{5}$.
∴α=$arccos\frac{{2\sqrt{5}}}{5}$;
(3)若θ=60°,且點(diǎn)A(2,1),
由$x=x′+\frac{1}{2}y′,y=\frac{\sqrt{3}}{2}y′$,可得A在直角坐標(biāo)系下的坐標(biāo)為($\frac{5}{2},\frac{\sqrt{3}}{2}$),
∴過點(diǎn)A($\frac{5}{2},\frac{\sqrt{3}}{2}$)且使得原點(diǎn)O到直線l的距離最大的直線方程為$y-\frac{\sqrt{3}}{2}=-\frac{5}{\sqrt{3}}(x-\frac{5}{2})$,
代入$x=x′+\frac{1}{2}y′,y=\frac{\sqrt{3}}{2}y′$,整理得5x′+4y′-14=0.
∴過點(diǎn)A(2,1),使得原點(diǎn)O到直線l的距離最大的直線方程為5x+4y-14=0.
點(diǎn)評 本題考查平面向量的數(shù)量積運(yùn)算,關(guān)鍵是對題意的理解,屬中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
型號 | 小包裝 | 大包裝 |
重量 | 100克 | 300克 |
包裝費(fèi) | 0.5元 | 0.7元 |
銷售價(jià)格 | 3.00元 | 8.4元 |
A. | ①② | B. | ①④ | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=3或4 | B. | x=±3或4 | C. | x=-3或4 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2π-9 | B. | 9-2π | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,2$\sqrt{2}$] | B. | [4,8] | C. | [-2,2] | D. | [0,2$\sqrt{2}$] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com