求函數(shù)y=
x2+6x+15
的值域.
考點(diǎn):函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:對x2+6x+15進(jìn)行配方即可得到x2+6x+15的值域,從而得到函數(shù)y的值域.
解答: 解:y=
(x+3)2+6
6

∴函數(shù)y=
x2+6x+15
的值域?yàn)閇
6
,+∞).
點(diǎn)評:考查用配方法求二次函數(shù)值域的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域?yàn)椋╝,b),導(dǎo)函數(shù)f′(x)在(a,b)內(nèi)的圖象如圖所示,則函數(shù)f(x)在(a,b)內(nèi)有極小值點(diǎn)(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則它的體積是( 。
A、
2
3
π
B、8-
1
3
π
C、8-2π
D、8-
2
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a是空間任意一條直線,α是一個(gè)平面,則平面α內(nèi)一定存在直線與直線a( 。
A、相交B、平行C、異面D、垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α,β是兩個(gè)不同的平面,m,n是兩條不同的直線,給出下列命題:
①若m⊥α,m?β,則α⊥β;
②若m?α,n?α,m∥β,n∥β,則α∥β;
③若α∥β,m?α,n?β,則m∥n;
④若若m⊥α,n⊥β,m∥n,則α∥β
其中正確的命題是(  )
A、①②B、②③C、③④D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx-φ)+1(A>0,ω>0,|φ|<π)在x=
π
3
處取得最大值為3,其圖象相鄰兩條對稱軸之間的距離為
π
2

(1)求函數(shù)f(x)的解析式;
(2)設(shè)α∈(0,
π
2
),則f(
α
2
)=2,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),過點(diǎn)F1的直線交橢圓E于A,B兩點(diǎn),
|AF1|=3|BF1|,且|AB|=4,△ABF2的周長為16
(1)求|AF2|;
(2)若直線AB的斜率為1,求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三角形ABC的頂點(diǎn)坐標(biāo)為A(-1,5),B(-2,-1),C(4,7),求BC邊上中線AM的長和AM所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在教育心理學(xué)中有時(shí)可用函數(shù)f(x)=
0.1+1.5ln
a
a-x
,(x≥6)
x-4.4
x-4
,(x>6)
描述學(xué)習(xí)某學(xué)科知識(shí)的掌握程度,其中x表示某學(xué)科知識(shí)的學(xué)習(xí)次數(shù)(x∈N*),正實(shí)數(shù)a與學(xué)科知識(shí)有關(guān).
(1)當(dāng)x≥7時(shí),判斷f(x)的單調(diào)性,并加以證明;
(2)根據(jù)經(jīng)驗(yàn),學(xué)科甲、乙、丙對應(yīng)的a的取值區(qū)間分別為(115,121],(121,127],(127,133].當(dāng)學(xué)習(xí)某學(xué)科知識(shí)5次時(shí),掌握程度是70%,請確定相應(yīng)的學(xué)科.(參考數(shù)據(jù):e0.04=1.04,e0.4=1.49)

查看答案和解析>>

同步練習(xí)冊答案