【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若,試討論函數(shù)零點(diǎn)的個(gè)數(shù);
(3)在(2)的條件下,若有兩個(gè)零點(diǎn),,求證:.
【答案】(1)當(dāng)時(shí),在上單調(diào)遞減;當(dāng)時(shí),在上單調(diào)遞增,在單調(diào)遞減;(2) 當(dāng)時(shí),恰有一個(gè)零點(diǎn):當(dāng)時(shí),沒有零點(diǎn);當(dāng)時(shí),有兩個(gè)零點(diǎn);(3)見解析
【解析】
(1)求導(dǎo)后,分別在和兩種情況下討論導(dǎo)函數(shù)的符號(hào),從而得到函數(shù)的單調(diào)性;(2)利用導(dǎo)數(shù)判斷出函數(shù)的單調(diào)性,求得函數(shù)最大值為,分別在,,三種情況下,結(jié)合零點(diǎn)存在定理判斷出零點(diǎn)個(gè)數(shù);(3)根據(jù)零點(diǎn)的定義可求得,令,,可將整理為;令,,可求得,結(jié)合即可證得結(jié)論.
(1)由題意得:
當(dāng)時(shí),在上恒成立
則在上單調(diào)遞減
當(dāng)時(shí),若,,;若,
即在上單調(diào)遞增;在上單調(diào)遞減
綜上所述:當(dāng)時(shí),在上單調(diào)遞減;
當(dāng)時(shí),在上單調(diào)遞增,在單調(diào)遞減
(2)當(dāng)時(shí),,則
令,解得:
當(dāng)時(shí),,則在上單調(diào)遞減
當(dāng)時(shí),,則在上單調(diào)遞增
①當(dāng),即時(shí),當(dāng)且僅當(dāng)時(shí),,恰有一個(gè)零點(diǎn);
②當(dāng),即時(shí),恒成立,沒有零點(diǎn):
③當(dāng),即時(shí),,,
, 有兩個(gè)零點(diǎn)
綜上:當(dāng)時(shí),恰有一個(gè)零點(diǎn):當(dāng)時(shí),沒有零點(diǎn);當(dāng)時(shí),有兩個(gè)零點(diǎn)
(3)證明:
由題意知:,即
記,,則,故
,
記函數(shù),
則 在上單調(diào)遞增
當(dāng)時(shí),
由(2)知,
又
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直線AB,且ABBP2,AD=AE=1,AE⊥AB,且AE∥BP.
(1)求平面PCD與平面ABPE所成的二面角的余弦值;
(2)線段PD上是否存在一點(diǎn)N,使得直線BN與平面PCD所成角的正弦值等于?若存在,試確定點(diǎn)N的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,,,,,,點(diǎn)為的中點(diǎn).
(1)求證:平面;
(2)若平面 平面,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)求直線的普通方程與圓的直角坐標(biāo)方程;
(2)設(shè)動(dòng)點(diǎn)在圓上,動(dòng)線段的中點(diǎn)的軌跡為,與直線交點(diǎn)為,且直角坐標(biāo)系中,點(diǎn)的橫坐標(biāo)大于點(diǎn)的橫坐標(biāo),求點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是亞太區(qū)域國家與地區(qū)加強(qiáng)多邊經(jīng)濟(jì)聯(lián)系、交流與合作的重要組織,其宗旨和目標(biāo)是“相互依存、共同利益,堅(jiān)持開放性多邊貿(mào)易體制和減少區(qū)域間貿(mào)易壁壘.”2017年會(huì)議于11月10日至11日在越南峴港舉行.某研究機(jī)構(gòu)為了了解各年齡層對(duì)會(huì)議的關(guān)注程度,隨機(jī)選取了100名年齡在內(nèi)的市民進(jìn)行了調(diào)查,并將結(jié)果繪制成如圖所示的頻率分布直方圖(分組區(qū)間分別為,,,,).
(1)求選取的市民年齡在內(nèi)的人數(shù);
(2)若從第3,4組用分層抽樣的方法選取5名市民進(jìn)行座談,再從中選取2人參與會(huì)議的宣傳活動(dòng),求參與宣傳活動(dòng)的市民中至少有一人的年齡在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,隨著互聯(lián)網(wǎng)的發(fā)展,諸如“滴滴打車”“神州專車”等網(wǎng)約車服務(wù)在我國各城市迅猛發(fā)展,為人們出行提供了便利,但也給城市交通管理帶來了一些困難.為掌握網(wǎng)約車在省的發(fā)展情況,省某調(diào)查機(jī)構(gòu)從該省抽取了5個(gè)城市,分別收集和分析了網(wǎng)約車的,兩項(xiàng)指標(biāo)數(shù),數(shù)據(jù)如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
指標(biāo)數(shù) | 2 | 4 | 5 | 6 | 8 |
指標(biāo)數(shù) | 3 | 4 | 4 | 4 | 5 |
經(jīng)計(jì)算得:,,.
(1)試求與間的相關(guān)系數(shù),并利用說明與是否具有較強(qiáng)的線性相關(guān)關(guān)系(若,則線性相關(guān)程度很高,可用線性回歸模型擬合);
(2)建立關(guān)于的回歸方程,并預(yù)測(cè)當(dāng)指標(biāo)數(shù)為7時(shí),指標(biāo)數(shù)的估計(jì)值;
(3)若城市的網(wǎng)約車指標(biāo)數(shù)落在區(qū)間之外,則認(rèn)為該城市網(wǎng)約車數(shù)量過多,會(huì)對(duì)城市交通管理帶來較大的影響,交通管理部門將介入進(jìn)行治理,直至指標(biāo)數(shù)回落到區(qū)間之內(nèi).現(xiàn)已知2018年11月該城市網(wǎng)約車的指標(biāo)數(shù)為13,問:該城市的交通管理部門是否要介入進(jìn)行治理?試說明理由.
附:相關(guān)公式:,,.
參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(且),.
(1)若函數(shù)在上的最大值為1,求的值;
(2)若存在使得關(guān)于的不等式成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中, , , 為的中點(diǎn), 為的中點(diǎn),且為正三角形.
(1)求證: 平面;
(2)若,三棱錐的體積為1,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某險(xiǎn)種的基本保費(fèi)為a(單位:元),繼續(xù)購買該險(xiǎn)種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:
上年度出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
保費(fèi) | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
隨機(jī)調(diào)查了該險(xiǎn)種的200名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到如下統(tǒng)計(jì)表:
出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
頻數(shù) | 60 | 50 | 30 | 30 | 20 | 10 |
(1)記A為事件:“一續(xù)保人本年度的保費(fèi)不高于基本保費(fèi)”,求P(A)的估計(jì)值;
(2)記B為事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)但不高于基本保費(fèi)的160%”,求P(B)的估計(jì)值;
(3)求續(xù)保人本年度平均保費(fèi)的估計(jì)值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com