【題目】如圖,在四棱錐P-ABCD中,底面為正方形,△PAD為等邊三角形,平面PAD丄平面PCD.
(1)證明:平面PAD丄平面ABCD:
(2)若AB=2,Q為線段的中點,求三棱錐Q-PCD的體積.
【答案】(1)詳見解析(2)
【解析】
(1)取的中點,連結(jié),利用面面垂直的性質(zhì),證得平面,再由正方形的性質(zhì),證得,利用線面垂直的判定定理,得到平面,進而得到平面平面;
(2)由(1)得到平面的距離,進而求得到平面的距離,利用體積公式,即可求解.
(1)證明:取的中點,連結(jié),
因為為等邊三角形,所以,
又因為平面,平面平面,
平面平面,所以平面,
因為平面,所以,
因為底面為正方形,所以,
因為,所以平面,
又因為平面,所以平面平面.
(2)由(1)得平面,所以到平面的距離,
因為底面為正方形,所以,
又因為平面,平面,所以平面,
所以兩點到平面的距離相等,均為,
又為線段的中點,所以到平面的距離,
由(1)知,平面,因為平面,所以,
所以.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(其中)的最小周期為.
(1)求的值及的單調(diào)遞增區(qū)間;
(2)將函數(shù)的圖象向右平移個單位,再將圖象上各點的橫坐標縮短為原來的(縱坐標不變)得到函數(shù)的圖象,若關于x的方程在區(qū)間上有且只有一個解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐中,底面為菱形,且,,過側(cè)面中線的一個平面與直線垂直,并與此四棱錐的面相交,交線圍成一個平面圖形.
(1)畫出這個平面圖形,并證明平面;
(2)若,求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(|x|﹣b)2+c,函數(shù)g(x)=x+m.
(1)當b=2,m=﹣4時,f(x)≥g(x)恒成立,求實數(shù)c的取值范圍;
(2)當c=﹣3,m=﹣2時,方程f(x)=g(x)有四個不同的解,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了更好地支持“中小型企業(yè)”的發(fā)展,某市決定對部分企業(yè)的稅收進行適當?shù)臏p免,某機構調(diào)查了當?shù)氐闹行⌒推髽I(yè)年收入情況,并根據(jù)所得數(shù)據(jù)畫出了樣本的頻率分布直方圖,下面三個結(jié)論:
①樣本數(shù)據(jù)落在區(qū)間的頻率為0.45;
②如果規(guī)定年收入在500萬元以內(nèi)的企業(yè)才能享受減免稅政策,估計有55%的當?shù)刂行⌒推髽I(yè)能享受到減免稅政策;
③樣本的中位數(shù)為480萬元.
其中正確結(jié)論的個數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的長軸為,且過點
(1)求橢圓的方程;
(2)設點為原點,若點在曲線上,點在直線上,且,試判斷直線與圓的位置關系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:的長軸長為4,離心率為,點P在橢圓C上.
(1)求橢圓C的標準方程;
(2)已知點M (4,0),點N(0,n),若以PM為直徑的圓恰好經(jīng)過線段PN的中點,求n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《中華人民共和國個人所得稅法》規(guī)定,公民月收入總額(工資、薪金等)不超過免征額的部分不必納稅,超過免征額的部分為全月應納稅所得額,個人所得稅稅款按稅率表分段累計計算.為了給公民合理減負,穩(wěn)步提升公民的收入水平,自2018年10月1日起,個人所得稅免征額和稅率進行了調(diào)整,調(diào)整前后的個人所得稅稅率表如下:
(1)已知小李2018年9月份上交的稅費是295元,10月份月工資、薪金等稅前收入與9月份相同,請幫小李計算一下稅率調(diào)整后小李10月份的稅后實際收入是多少?
(2)某稅務部門在小李所在公司利用分層抽樣方法抽取某月100位不同層次員工的稅前收入,并制成下面的頻率分布直方圖.
(ⅰ)請根據(jù)頻率分布直方圖估計該公司員工稅前收入的中位數(shù);
(ⅱ)同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表,按調(diào)整后稅率表,試估計小李所在的公司員工該月平均納稅多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于數(shù)列,稱(其中)為數(shù)列的前k項“波動均值”.若對任意的,都有,則稱數(shù)列為“趨穩(wěn)數(shù)列”.
(1)若數(shù)列1,,2為“趨穩(wěn)數(shù)列”,求的取值范圍;
(2)若各項均為正數(shù)的等比數(shù)列的公比,求證:是“趨穩(wěn)數(shù)列”;
(3)已知數(shù)列的首項為1,各項均為整數(shù),前項的和為. 且對任意,都有, 試計算: ().
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com