3.下列求導(dǎo)運(yùn)算正確的是(  )
A.(3x)′=x•3x-1B.(2ex)′=2ex(其中e為自然對(duì)數(shù)的底數(shù))
C.(x2$+\frac{1}{x}$)′=2x$+\frac{1}{{x}^{2}}$D.($\frac{x}{cosx}$)′=$\frac{cosx-xsinx}{co{s}^{2}x}$

分析 根據(jù)導(dǎo)數(shù)的運(yùn)算法則和基本導(dǎo)數(shù)公式求導(dǎo)即可.

解答 解:(3x)′=ln3•3x,故A錯(cuò)誤,
(2ex)′=2ex,正確,
(x2$+\frac{1}{x}$)′=2x-$\frac{1}{{x}^{2}}$,故C錯(cuò)誤,
($\frac{x}{cosx}$)′=$\frac{cosx+xsinx}{co{s}^{2}x}$,故D錯(cuò)誤,
故選:B

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的運(yùn)算法則和基本導(dǎo)數(shù)公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,梯形ABEF中,AF∥BE,AB⊥AF,且AB=BC=AD=DF=2CE=2,沿DC將梯形DCFE折起,使得平面DCFE⊥平面ABCD.
(1)證明:AC∥平面BEF;
(2)求三棱錐D-BEF的體積;
(3)求直線AF與平面BDF所求的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知$a=ln\frac{1}{2012}-\frac{1}{2012},b=ln\frac{1}{2013}-\frac{1}{2013},c=ln\frac{1}{2014}-\frac{1}{2014}$,則( 。
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|x+a|+|x+2|(a∈R).
(1)當(dāng)a=-1時(shí),求不等式f(x)≥5的解集;
(2)若f(x)≥|x-2|的解集包含[-4,-2],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知拋物線C:y2=2px(p>0)
(1)若直線x-y-2=0過拋物線C的焦點(diǎn),求拋物線C的方程,并求出準(zhǔn)線方程;
(2)設(shè)p=2,A,B是C上異于坐標(biāo)原點(diǎn)O的兩個(gè)動(dòng)點(diǎn),滿足OA⊥OB,△ABO的面積是否存在最小值?若存在,請(qǐng)求出最小值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集為[-1,-1].
(1)求m的值;
(2)若a,b,c∈R,且$\frac{1}{{a}^{2}}$+$\frac{4}{^{2}}$+$\frac{9}{{c}^{2}}$=m,求證:a2+b2+c2≥36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.某人打靶時(shí)連續(xù)射擊兩次,每次中靶的概率都是0.7,則他至少有一次中靶的概率為0.91.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列命題中正確的是( 。
A.垂直于同一個(gè)平面的兩條直線平行B.平行于同一個(gè)平面的兩條直線平行
C.垂直于同一直線的兩條直線平行D.垂直于同一個(gè)平面的兩個(gè)平面平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若關(guān)于x的不等式ax2+bx+2<0的解集為(-∞,-$\frac{1}{3}$)∪($\frac{1}{2}$,+∞),則a-b的值是( 。
A.-14B.-12C.12D.14

查看答案和解析>>

同步練習(xí)冊(cè)答案