【題目】已知在平面直角坐標(biāo)系中,橢圓C的方程為,以為極點(diǎn), 軸的非負(fù)半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.
(1)求直線(xiàn)的直角坐標(biāo)方程;
(2)設(shè)為橢圓上任意一點(diǎn),求的最大值.
【答案】(1);(2).
【解析】試題分析:(1)直線(xiàn)的極坐標(biāo)方程可以變形為,即,將, 代入可得直線(xiàn)的普通方程;(2)根據(jù)橢圓的參數(shù)方程可設(shè),則 ,由三角形的有界性可得答案.
試題解析:(1)根據(jù)題意,橢圓C的方程為+=1,則其參數(shù)方程為,(α為參數(shù));
直線(xiàn)l的極坐標(biāo)方程為ρsin(θ+)=3,變形可得ρsinθcos+ρcosθsin=3,
即ρsinθ+ρcosθ=3,將x=ρcosθ,y=ρsinθ代入可得x+y﹣6=0,即直線(xiàn)l的普通方程為x+y﹣6=0.
(2)根據(jù)題意,M(x,y)為橢圓一點(diǎn),則設(shè)M(2cosθ,4sinθ),
|2x+y﹣1|=|4cosθ+4sinθ﹣1|=|8sin(θ+)﹣1|,
分析可得,當(dāng)sin(θ+)=﹣1時(shí),|2x+y﹣1|取得最大值9.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若實(shí)數(shù),滿(mǎn)足,則的最小值是( )
A. 0 B. C. -6 D. -3
【答案】C
【解析】
畫(huà)出可行域,向上平移目標(biāo)函數(shù)到可行域邊界的位置,由此求得目標(biāo)函數(shù)的最小值.
畫(huà)出可行域如下圖所示,由圖可知,目標(biāo)函數(shù)在點(diǎn)處取得最小值為.故選C.
【點(diǎn)睛】
本小題主要考查線(xiàn)性規(guī)劃的知識(shí),考查線(xiàn)性目標(biāo)函數(shù)的最值的求法,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.畫(huà)可行域時(shí),要注意判斷不等式所表示的范圍是在直線(xiàn)的哪個(gè)方位,不一定是三條直線(xiàn)圍成的三角形.還要注意目標(biāo)函數(shù)化成斜截式后,截距和目標(biāo)函數(shù)的對(duì)應(yīng)關(guān)系,截距最大時(shí),目標(biāo)函數(shù)不一定取得最大值,可能取得最小值.
【題型】單選題
【結(jié)束】
12
【題目】已知,是橢圓長(zhǎng)軸上的兩個(gè)端點(diǎn),,是橢圓上關(guān)于軸對(duì)稱(chēng)的兩點(diǎn),直線(xiàn),的斜率分別為,若橢圓的離心率為,則的最小值為( )
A. 1 B. C. D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形中,,,以為折痕將△折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.
(1)證明:平面平面;
(2)為線(xiàn)段上一點(diǎn),為線(xiàn)段上一點(diǎn),且,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是定義在上的函數(shù),若存在,使得在單調(diào)遞增,在上單調(diào)遞減,則稱(chēng)為上的單峰函數(shù),為峰點(diǎn),包含峰點(diǎn)的區(qū)間稱(chēng)為含峰區(qū)間,其含峰區(qū)間的長(zhǎng)度為:.
(1)判斷下列函數(shù)中,哪些是“上的單峰函數(shù)”?若是,指出峰點(diǎn);若不是,說(shuō)出原因;;
(2)若函數(shù)是上的單峰函數(shù),求實(shí)數(shù)的取值范圍;
(3)若函數(shù)是區(qū)間上的單峰函數(shù),證明:對(duì)于任意的,若,則為含峰區(qū)間;若,則為含峰區(qū)間;試問(wèn)當(dāng)滿(mǎn)足何種條件時(shí),所確定的含峰區(qū)間的長(zhǎng)度不大于0.6.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是正方體的平面展開(kāi)圖,在這個(gè)正方體中,正確的命題是( )
A. BD與CF成60°角 B. BD與EF成60°角 C. AB與CD成60°角 D. AB與EF成60°角
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一只藥用昆蟲(chóng)的產(chǎn)卵數(shù)與一定范圍內(nèi)的溫度有關(guān),現(xiàn)收集了該種藥用昆蟲(chóng)的組觀測(cè)數(shù)據(jù)如下表:
溫度 | ||||||
產(chǎn)卵數(shù)/個(gè) |
經(jīng)計(jì)算得: , , , , ,線(xiàn)性回歸模型的殘差平方和, ,其中, 分別為觀測(cè)數(shù)據(jù)中的溫差和產(chǎn)卵數(shù), .
(1)若用線(xiàn)性回歸方程,求關(guān)于的回歸方程(精確到);
(2)若用非線(xiàn)性回歸模型求得關(guān)于回歸方程為,且相關(guān)指數(shù).
(i)試與(1)中的回歸模型相比,用說(shuō)明哪種模型的擬合效果更好.
(ii)用擬合效果好的模型預(yù)測(cè)溫度為時(shí)該種藥用昆蟲(chóng)的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).
附:一組數(shù)據(jù), ,…, ,其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)為, ;相關(guān)指數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解男性家長(zhǎng)和女性家長(zhǎng)對(duì)高中學(xué)生成人禮儀式的接受程度,某中學(xué)團(tuán)委以問(wèn)卷形式調(diào)查了位家長(zhǎng),得到如下統(tǒng)計(jì)表:
男性家長(zhǎng) | 女性家長(zhǎng) | 合計(jì) | |
贊成 | |||
無(wú)所謂 | |||
合計(jì) |
(1)據(jù)此樣本,能否有的把握認(rèn)為“接受程度”與家長(zhǎng)性別有關(guān)?說(shuō)明理由;
(2)學(xué)校決定從男性家長(zhǎng)中按分層抽樣方法選出人參加今年的高中學(xué)生成人禮儀式,并從中選人交流發(fā)言,求發(fā)言人中至多一人持“贊成”態(tài)度的概率..
參考數(shù)據(jù)
參考公式
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C1:(a>b>0)與雙曲線(xiàn) C2:x2﹣有公共的焦點(diǎn),C2的一條漸近線(xiàn)與以C1的長(zhǎng)軸為直徑的圓相交于A,B兩點(diǎn),若C1恰好將線(xiàn)段AB三等分,則橢圓C1的離心率為 ( 。
A. e2= B. e2= C. e2= D. e2=
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com