【題目】已知在平面直角坐標(biāo)系中,橢圓C的方程為,以為極點(diǎn), 軸的非負(fù)半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為

(1)求直線(xiàn)的直角坐標(biāo)方程;

(2)設(shè)為橢圓上任意一點(diǎn),求的最大值.

【答案】(1);(2).

【解析】試題分析:1直線(xiàn)的極坐標(biāo)方程可以變形為,即,將, 代入可得直線(xiàn)的普通方程;(2根據(jù)橢圓的參數(shù)方程可設(shè),則 ,由三角形的有界性可得答案.

試題解析:(1)根據(jù)題意,橢圓C的方程為+=1,則其參數(shù)方程為,(α為參數(shù));

直線(xiàn)l的極坐標(biāo)方程為ρsin(θ+)=3,變形可得ρsinθcos+ρcosθsin=3,

ρsinθ+ρcosθ=3,將x=ρcosθ,y=ρsinθ代入可得x+y﹣6=0,即直線(xiàn)l的普通方程為x+y﹣6=0.

(2)根據(jù)題意,M(x,y)為橢圓一點(diǎn),則設(shè)M(2cosθ,4sinθ),

|2x+y﹣1|=|4cosθ+4sinθ﹣1|=|8sin(θ+)﹣1|,

分析可得,當(dāng)sin(θ+)=﹣1時(shí),|2x+y﹣1|取得最大值9.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若實(shí)數(shù),滿(mǎn)足,則的最小值是( )

A. 0 B. C. -6 D. -3

【答案】C

【解析】

畫(huà)出可行域,向上平移目標(biāo)函數(shù)到可行域邊界的位置,由此求得目標(biāo)函數(shù)的最小值.

畫(huà)出可行域如下圖所示,由圖可知,目標(biāo)函數(shù)在點(diǎn)處取得最小值為.故選C.

【點(diǎn)睛】

本小題主要考查線(xiàn)性規(guī)劃的知識(shí),考查線(xiàn)性目標(biāo)函數(shù)的最值的求法,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.畫(huà)可行域時(shí),要注意判斷不等式所表示的范圍是在直線(xiàn)的哪個(gè)方位,不一定是三條直線(xiàn)圍成的三角形.還要注意目標(biāo)函數(shù)化成斜截式后,截距和目標(biāo)函數(shù)的對(duì)應(yīng)關(guān)系,截距最大時(shí),目標(biāo)函數(shù)不一定取得最大值,可能取得最小值.

型】單選題
結(jié)束】
12

【題目】已知是橢圓長(zhǎng)軸上的兩個(gè)端點(diǎn),是橢圓上關(guān)于軸對(duì)稱(chēng)的兩點(diǎn),直線(xiàn),的斜率分別為,若橢圓的離心率為,則的最小值為( )

A. 1 B. C. D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在平行四邊形中,,,以為折痕將△折起,使點(diǎn)到達(dá)點(diǎn)的位置,且

1)證明:平面平面;

2為線(xiàn)段上一點(diǎn),為線(xiàn)段上一點(diǎn),且,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是定義在上的函數(shù),若存在,使得單調(diào)遞增,在上單調(diào)遞減,則稱(chēng)上的單峰函數(shù),為峰點(diǎn),包含峰點(diǎn)的區(qū)間稱(chēng)為含峰區(qū)間,其含峰區(qū)間的長(zhǎng)度為:

(1)判斷下列函數(shù)中,哪些是“上的單峰函數(shù)”?若是,指出峰點(diǎn);若不是,說(shuō)出原因;;

(2)若函數(shù)上的單峰函數(shù),求實(shí)數(shù)的取值范圍;

(3)若函數(shù)是區(qū)間上的單峰函數(shù),證明:對(duì)于任意的,若,則為含峰區(qū)間;若,則為含峰區(qū)間;試問(wèn)當(dāng)滿(mǎn)足何種條件時(shí),所確定的含峰區(qū)間的長(zhǎng)度不大于0.6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是正方體的平面展開(kāi)圖,在這個(gè)正方體中,正確的命題是( )

A. BD與CF成60°角 B. BD與EF成60°角 C. AB與CD成60°角 D. AB與EF成60°角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一只藥用昆蟲(chóng)的產(chǎn)卵數(shù)與一定范圍內(nèi)的溫度有關(guān),現(xiàn)收集了該種藥用昆蟲(chóng)的組觀測(cè)數(shù)據(jù)如下表:

溫度

產(chǎn)卵數(shù)/個(gè)

經(jīng)計(jì)算得: , , , ,線(xiàn)性回歸模型的殘差平方和, ,其中, 分別為觀測(cè)數(shù)據(jù)中的溫差和產(chǎn)卵數(shù), .

(1)若用線(xiàn)性回歸方程,求關(guān)于的回歸方程(精確到);

(2)若用非線(xiàn)性回歸模型求得關(guān)于回歸方程為,且相關(guān)指數(shù).

(i)試與(1)中的回歸模型相比,用說(shuō)明哪種模型的擬合效果更好.

(ii)用擬合效果好的模型預(yù)測(cè)溫度為時(shí)該種藥用昆蟲(chóng)的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).

附:一組數(shù)據(jù), ,…, ,其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)為, ;相關(guān)指數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解男性家長(zhǎng)和女性家長(zhǎng)對(duì)高中學(xué)生成人禮儀式的接受程度,某中學(xué)團(tuán)委以問(wèn)卷形式調(diào)查了位家長(zhǎng),得到如下統(tǒng)計(jì)表:

男性家長(zhǎng)

女性家長(zhǎng)

合計(jì)

贊成

無(wú)所謂

合計(jì)

(1)據(jù)此樣本,能否有的把握認(rèn)為“接受程度”與家長(zhǎng)性別有關(guān)?說(shuō)明理由;

(2)學(xué)校決定從男性家長(zhǎng)中按分層抽樣方法選出人參加今年的高中學(xué)生成人禮儀式,并從中選人交流發(fā)言,求發(fā)言人中至多一人持“贊成”態(tài)度的概率..

參考數(shù)據(jù)

參考公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C1ab>0)與雙曲線(xiàn) C2x2有公共的焦點(diǎn),C2的一條漸近線(xiàn)與以C1的長(zhǎng)軸為直徑的圓相交于A,B兩點(diǎn),若C1恰好將線(xiàn)段AB三等分,則橢圓C1的離心率為 ( 。

A. e2 B. e2 C. e2 D. e2

查看答案和解析>>

同步練習(xí)冊(cè)答案