6.如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點(diǎn),BM的延長(zhǎng)線交⊙O于N,過N點(diǎn)的切線交CA的延長(zhǎng)線于P.
(1)求證:PM2=PA•PC;
(2)⊙O的半徑為2$\sqrt{3}$,OA=$\sqrt{3}$OM,求MN的長(zhǎng).

分析 (1)連結(jié)ON,運(yùn)用切線的性質(zhì)和切割線定理,結(jié)合等腰三角形的性質(zhì),即可得證;
(2)延長(zhǎng)BO交⊙于點(diǎn)D,連結(jié)DN,證得△BOM~△BND,可得對(duì)應(yīng)邊成比例,結(jié)合勾股定理,計(jì)算即可得到所求值.

解答 證明:(1)連結(jié)ON,則ON⊥PN,且△OBN為等腰三角形,

則∠OBN=∠ONB,
∵∠PMN=∠OMB=90°-∠OBN,∠PNM=90°-∠ONB,
∴∠PMN=∠PNM,
∴PM=PN. 
由條件,根據(jù)切割線定理,有PN2=PA•PC,
所以PM2=PA•PC. 
解:(2)$OA=\sqrt{3}OM=\sqrt{3}$,
∴OM=1,在Rt△BOM中,$BM=\sqrt{O{B^2}+O{M^2}}=2$.
延長(zhǎng)BO交⊙于點(diǎn)D,連結(jié)DN,
可得∠BND=∠BOM,∠OBM=∠NBD,
則△BOM~△BND,
于是$\frac{BO}{BN}=\frac{BM}{BD}$,則$\frac{{\sqrt{3}}}{BN}=\frac{2}{{2\sqrt{3}}}$,
∴BN=3,
∴MN=BN-BM=1.

點(diǎn)評(píng) 本題考查三角形相似的判定和性質(zhì)的運(yùn)用,考查圓的切割線定理和直角三角形的勾股定理的運(yùn)用,考查推理和運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某幾何體的三視圖如圖所示,則它的體積為( 。
A.$\frac{2π}{3}$B.$\frac{4π}{3}$C.D.$\frac{8π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.從1,3,5,7,9中任取3個(gè)數(shù)字,從2,4,6,8中任取兩個(gè)數(shù)字,一共可以組成沒有重復(fù)數(shù)字的五位偶數(shù)的個(gè)數(shù)為( 。
A.2880B.7200C.1440D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知雙曲線$\frac{x^2}{4}$-$\frac{y^2}{b^2}$=1(b∈N+)的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,P為雙曲線上一點(diǎn),|OP|<5,若|PF1|,|F1F2|,|PF2|成等比數(shù)列,則雙曲線的方程為( 。
A.$\frac{x^2}{4}$-y2=1B.$\frac{x^2}{4}$-$\frac{y^2}{2}$=1C.$\frac{x^2}{4}$-$\frac{y^2}{3}$=1D.$\frac{x^2}{4}$-$\frac{y^2}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)y=loga(a2-ax-2)在[0,1]上是減函數(shù),則a的取值范圍是(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)α、β、γ均為實(shí)數(shù).
(1)證明:|cos(α+β)|≤|cosα|+|sinβ|;|sin(α+β)|≤|cosα|+|cosβ|.
(2)若α+β+γ=0.證明:|cosα|+|cosβ|+|cosγ|≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=t\\ y=t+1\end{array}\right.$,(t為參數(shù),t∈R),圓C的參數(shù)方程為$\left\{\begin{array}{l}x=cosθ+1\\ y=sinθ\end{array}\right.$,(θ為參數(shù),θ∈[0,2π)),則圓心C到直線l的距離為( 。
A.0B.2C.$\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)y=f (x),對(duì)任意實(shí)數(shù)x,y都有f (x+y)=f (x)+f (y)+2xy.
(1)求f (0)的值;
(2)若f (1)=1,求f (2),f (3),f (4)的值;
(3)在(2)的條件下,猜想f (n)(n∈N*)的表達(dá)式并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)集合A={x|x2-3x+2=0},B={x|x2-ax+2=0},若AUB=A,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案