分析 (1)連結(jié)ON,運(yùn)用切線的性質(zhì)和切割線定理,結(jié)合等腰三角形的性質(zhì),即可得證;
(2)延長(zhǎng)BO交⊙于點(diǎn)D,連結(jié)DN,證得△BOM~△BND,可得對(duì)應(yīng)邊成比例,結(jié)合勾股定理,計(jì)算即可得到所求值.
解答 證明:(1)連結(jié)ON,則ON⊥PN,且△OBN為等腰三角形,
則∠OBN=∠ONB,
∵∠PMN=∠OMB=90°-∠OBN,∠PNM=90°-∠ONB,
∴∠PMN=∠PNM,
∴PM=PN.
由條件,根據(jù)切割線定理,有PN2=PA•PC,
所以PM2=PA•PC.
解:(2)$OA=\sqrt{3}OM=\sqrt{3}$,
∴OM=1,在Rt△BOM中,$BM=\sqrt{O{B^2}+O{M^2}}=2$.
延長(zhǎng)BO交⊙于點(diǎn)D,連結(jié)DN,
可得∠BND=∠BOM,∠OBM=∠NBD,
則△BOM~△BND,
于是$\frac{BO}{BN}=\frac{BM}{BD}$,則$\frac{{\sqrt{3}}}{BN}=\frac{2}{{2\sqrt{3}}}$,
∴BN=3,
∴MN=BN-BM=1.
點(diǎn)評(píng) 本題考查三角形相似的判定和性質(zhì)的運(yùn)用,考查圓的切割線定理和直角三角形的勾股定理的運(yùn)用,考查推理和運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2π}{3}$ | B. | $\frac{4π}{3}$ | C. | 2π | D. | $\frac{8π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2880 | B. | 7200 | C. | 1440 | D. | 60 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{4}$-y2=1 | B. | $\frac{x^2}{4}$-$\frac{y^2}{2}$=1 | C. | $\frac{x^2}{4}$-$\frac{y^2}{3}$=1 | D. | $\frac{x^2}{4}$-$\frac{y^2}{4}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | $\sqrt{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com