19.已知i為虛數(shù)單位,復(fù)數(shù)z=$\frac{1-i}{2+i}$,則z的共軛復(fù)數(shù)是( 。
A.$\frac{1}{5}$+$\frac{3}{5}$iB.$\frac{1}{3}$-iC.$\frac{1}{5}$-$\frac{3}{5}$iD.$\frac{1}{3}$+i

分析 利用復(fù)數(shù)代數(shù)形式的乘除運算化簡z,再由共軛復(fù)數(shù)的概念得答案.

解答 解:∵z=$\frac{1-i}{2+i}$=$\frac{(1-i)(2-i)}{(2+i)(2-i)}=\frac{1-3i}{5}=\frac{1}{5}-\frac{3}{5}i$,
∴$\overline{z}=\frac{1}{5}+\frac{3}{5}i$.
故選:A.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若集合A={0,1,2},B={x|x2≤4,x∈N},則A∩B=( 。
A.{x|0≤x≤2}B.{x|-2≤x≤2}C.{0,1,2}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在空間直角坐標(biāo)系O-xyz中,已知A(1,2,-1),B(1,2,1),則|AB|=(  )
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知f(x)=$\left\{\begin{array}{l}{\sqrt{x}(0≤x≤1)}\\{\sqrt{2x-{x}^{2}}(1<x≤2)}\end{array}\right.$.
(1)求f(x)的最大值;
(2)求f(x)與x軸圍成的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.對于等差數(shù)列{an}有如下命題:“若{an}是等差數(shù)列,s,t 是互不相等的正整數(shù),a1=0,則有(s-1)at-(t-1)as=0”類比此命題,補(bǔ)充等比數(shù)列{bn}相應(yīng)的一個正確命題:“若{bn}是等比數(shù)列,s,t 是互不相等的正整數(shù),b1=1,則有$\frac{_{t}^{s-1}}{_{s}^{t-1}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖所示程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”,執(zhí)行該程序框圖,若輸入a,b分別為8,18,則輸出的a等于(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知拋物線的對稱軸為坐標(biāo)軸,頂點是坐標(biāo)原點,準(zhǔn)線方程為x=-1,直線l與拋物線相交于不同的A,B兩點.
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)如果$\overrightarrow{OA}$•$\overrightarrow{OB}$=-4,直線l是否過定點,若過,求出該定點,若不過,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},若A∩B=B,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.某六個人選座位,已知座位分兩排,各有3個,其中甲、乙兩人的關(guān)系較為親密,要求在同一排且相鄰,則不同的安排方法的種數(shù)為192.

查看答案和解析>>

同步練習(xí)冊答案