【題目】已知數(shù)列{an}的首項為1,Sn為數(shù)列{an}的前n項和,Sn+1=qSn+1,其中q>0,n∈N*
(1)若2a2 , a3 , a2+2成等差數(shù)列,求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足bn= ,且b2= ,證明:b1+b2++bn

【答案】
(1)解:由已知,Sn+1=qSn+1,Sn+2=qSn+1+1,兩式相減,得到an+2=qan+1(n≥1).

又由S2=qS1+1,得到a2=qa1

故an+1=qan對所有n≥1都成立.

所以數(shù)列{an}是首項為1,公比為q的等比數(shù)列,從而

由2a2,a3,a2+2成等差數(shù)列,可得2a3=3a2+2,即2q2=3q+2.

則(2q+1)(q﹣2)=0.

由已知,q>0,故q=2.

所以


(2)解:由(1)知,an=qn1

bn=

,q>0解得q=

因為1+q2n1>q2n1所以

于是b1+b2++bn>1+q+q2++qn1= = =

故b1+b2++bn


【解析】(1)由已知,Sn+1=qSn+1,Sn+2=qSn+1+1,兩式相減,得到an+2=qan+1(n≥1),即數(shù)列{an}是首項為1,公比為q的等比數(shù)列,求出q即可.(2)可得q= ,即 ,于是b1+b2++bn>1+q+q2++qn1= = =

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an},對任意的k∈N* , 當n=3k時,an= ;當n≠3k時,an=n,那么該數(shù)列中的第10個2是該數(shù)列的第項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空間四邊形ABCD的對角線AC=10,BD=6,M、N分別為AB、CD的中點,MN=7,則異面直線AC和BD所成的角等于(
A.30°
B.60°
C.90°
D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中, 已知定圓,動圓過點且與圓相切,記動圓圓心的軌跡為曲線.

(1)求曲線的方程;

(2)設(shè)是曲線上兩點,點關(guān)于軸的對稱點為 (異于點),若直線分別交軸于點,證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)和g(x)的圖象關(guān)于原點對稱,且f(x)=x2+x.
(Ⅰ)求函數(shù)g(x)的解析式;
(Ⅱ)若h(x)=g(x)﹣λf(x)+1在[﹣1,1]上是增函數(shù),求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1且an+1=an+2n+1,設(shè)數(shù)列{bn}滿足bn=an﹣1,對任意正整數(shù)n不等式 均成立,則實數(shù)m的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個焦點為,其左頂點在圓上.

Ⅰ)求橢圓的方程;

直線交橢圓兩點,設(shè)點關(guān)于軸的對稱點為(點與點不重合),且直線軸的交于點,試問的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P﹣ABCD中,△PAB為正三角形,四邊形ABCD為矩形,平面PAB⊥平面ABCD,AB=2AD,M,N分別為PB,PC中點.
(Ⅰ)求證:MN∥平面PAD;
(Ⅱ)求二面角B﹣AM﹣C的大小;
(Ⅲ)在BC上是否存在點E,使得EN⊥平面AMN?若存在,求 的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= x2+lnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求證:當x>1時, x2+lnx< x3

查看答案和解析>>

同步練習(xí)冊答案