【題目】已知集合A={x|log2 ≤1},B={x|x2﹣2x+1﹣k2≥0}.
(1)求集合A;
(2)若A∩B≠,求實數(shù)k的取值范圍.
【答案】
(1)解:由A中不等式變形得:log2 ≤1=log22,即0< ≤2,
解得:x>﹣1或x<﹣4且x≤﹣1或x≥2,
∴不等式的解集為x<﹣4或x≥2,
則A={x|x<﹣4或x≥2}
(2)解:依題意A∩B≠,得到x2﹣2x+1﹣k2≥0在x∈(﹣∞,﹣4)∪[2,+∞)上有解,
∴k2≤x2﹣2x+1在x∈(﹣∞,﹣4)∪[2,+∞)上有解,
∴k2≤1,
解得:﹣1≤k≤1
【解析】(1)求出A中不等式的解集確定出A即可;(2)由A與B的交集不為空集,確定出k的范圍即可.
【考點精析】利用集合的交集運算和對數(shù)函數(shù)的單調(diào)性與特殊點對題目進行判斷即可得到答案,需要熟知交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立;過定點(1,0),即x=1時,y=0;a>1時在(0,+∞)上是增函數(shù);0>a>1時在(0,+∞)上是減函數(shù).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差d>0的等差數(shù)列{an}中,a1=10,且a1 , 2a2+2,5a3成等比數(shù)列.
(1)求公差d及通項an;
(2)設(shè)Sn= + +…+ ,求證:Sn< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD中,底面ABCD是棱長為2的菱形,PA⊥平面ABCD,∠ABC=60°,E是BC中點,若H為PD上的動點,EH與平面PAD所成最大角的正切值為 .
(1)當(dāng)EH與平面PAD所成角的正切值為 時,求證:EH∥平面PAB;
(2)在(1)的條件下,求二面角A﹣PB﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拖延癥總是表現(xiàn)在各種小事上,但日積月累,特別影響個人發(fā)展.某校的一個社會實踐調(diào)查小組,在對該校學(xué)生進行“是否有明顯拖延癥”的調(diào)查中,隨機發(fā)放了110份問卷.對收回的100份有效問卷進行統(tǒng)計,得到如下列聯(lián)表:
有明顯拖延癥 | 無明顯拖延癥 | 合計 | |
男 | 35 | 25 | 60 |
女 | 30 | 10 | 40 |
合計 | 65 | 35 | 100 |
(Ⅰ)按女生是否有明顯拖延癥進行分層,已經(jīng)從40份女生問卷中抽取了8份問卷,現(xiàn)從這8份問卷中再隨機抽取3份,并記其中無明顯拖延癥的問卷的份數(shù)為,試求隨機變量的分布列和數(shù)學(xué)期望;
(Ⅱ)若在犯錯誤的概率不超過的前提下認為無明顯拖延癥與性別有關(guān),那么根據(jù)臨界值表,最精確的的值應(yīng)為多少?請說明理由.
附:獨立性檢驗統(tǒng)計量,其中.
獨立性檢驗臨界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一(2)班共有60名同學(xué)參加期末考試,現(xiàn)將其數(shù)學(xué)學(xué)科成績(均為整數(shù))分成六個分數(shù)段[40,50),[50,60),…,[90,100],畫出如如圖所示的部分頻率分布直方圖,請觀察圖形信息,回答下列問題:
(1)求70~80分數(shù)段的學(xué)生人數(shù);
(2)估計這次考試中該學(xué)科的優(yōu)分率(80分及以上為優(yōu)分)、中位數(shù)、平均值;
(3)現(xiàn)根據(jù)本次考試分數(shù)分成下列六段(從低分段到高分段依次為第一組、第二組、…、第六組)為提高本班數(shù)學(xué)整體成績,決定組與組之間進行幫扶學(xué)習(xí).若選出的兩組分數(shù)之差大于30分(以分數(shù)段為依據(jù),不以具體學(xué)生分數(shù)為依據(jù)),則稱這兩組為“最佳組合”,試求選出的兩組為“最佳組合”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定橢圓,稱圓心在原點,半徑為的圓是橢圓的“準圓”.若橢圓的一個焦點為,其短軸上的一個端點到的距離為.
(1)求橢圓的方程和其“準圓”方程;
(2)點是橢圓的“準圓”上的動點,過點作橢圓的切線交“準圓”于點.
①當(dāng)點為“準圓”與軸正半軸的交點時,求直線的方程并證明;
②求證:線段的長為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次歌手大獎賽上,七位評委為歌手打出的分數(shù)如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均值和方差分別為( )
A.9.4,0.484
B.9.4,0.016
C.9.5,0.04
D.9.5,0.016
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com