已知動點M(x,y)到直線l:x=4的距離是它到點N(1,0)的距離的2倍.
(1)求動點M的軌跡C的方程;
(2)過點P(0,3)的直線m與軌跡C交于A,B兩點,若A是PB的中點,求直線m的斜率.
解:(1)設(shè)M到直線l的距離為d,
根據(jù)題意,d=2|MN|.
由此得|4-x|=2,
化簡得+=1,
所以,動點M的軌跡方程為+=1.
(2)法一 由題意,設(shè)直線m的方程為y=kx+3,A(x1,y1),B(x2,y2).
將y=kx+3代入+=1中,
有(3+4k2)x2+24kx+24=0,
其中,Δ=(24k)2-4×24(3+4k2)=96(2k2-3)>0,
由求根公式得,
x1+x2=-, ①
x1x2=. ②
又因A是PB的中點,
故x2=2x1,③
將③代入①,②,得
x1=-,
=,
可得=,
且k2>,
解得k=-或k=,
所以,直線m的斜率為-或.
法二 由題意,設(shè)直線m的方程為y=kx+3,
A(x1,y1),B(x2,y2).
∵A是PB的中點,
∴x1=,①
y1=.②
又+=1,③
+=1.④
聯(lián)立①,②,③,④解得或
即點B的坐標(biāo)為(2,0)或(-2,0),
所以,直線m的斜率為-或.
科目:高中數(shù)學(xué) 來源: 題型:
函數(shù)f(x)=sin(πcos x)在區(qū)間[0,2π]上的零點個數(shù)是( )
(A)3 (B)4 (C)5 (D)6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知F1、F2為雙曲線C: -y2=1的左、右焦點,點P在C上,∠F1PF2=60°,則P到x軸的距離為( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)F1,F2是橢圓E: +=1(a>b>0)的左、右焦點,P為直線x=上一點,△F2PF1是底角為30°的等腰三角形,則E的離心率為( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓+=1(a>b>0),點P(a,a)在橢圓上.
(1)求橢圓的離心率;
(2)設(shè)A為橢圓的左頂點,O為坐標(biāo)原點,若點Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,F是拋物線C:x2=2py(p>0)的焦點,M是拋物線C上位于第一象限內(nèi)的任意一點,過M,F,O三點的圓的圓心為Q,點Q到拋物線C的準(zhǔn)線的距離為.
(1)求拋物線C的方程;
(2)是否存在點M,使得直線MQ與拋物線C相切于點M?若存在,求出點M的坐標(biāo);若不存在,說明理由.
(3)若點M的橫坐標(biāo)為,直線l:y=kx+與拋物線C有兩個不同的交點A,B,l與圓Q有兩個不同的交點D,E,求當(dāng)≤k≤2時,|AB|2+|DE|2的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某商場有來自三個國家的進口奶制品,其中A國、B國、C國的奶制品分別有40種、10種、30種,現(xiàn)從中抽取一個容量為16的樣本進行三聚氰胺檢測,若采用分層抽樣的方法抽取樣本,則抽取來自B國的奶制品________種.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com