2.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S3=9,S5=30,則a7+a8+a9=63.

分析 利用等差數(shù)列的求和公式、通項(xiàng)公式即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,∵S3=9,S5=30,
∴$3{a}_{1}+\frac{3×2}{2}d$=9,5a1+$\frac{5×4}{2}d$=30,
解得a1=0,d=3.
則a7+a8+a9=3a1+21d=63.
故答案為:63.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式、求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知集合A={x|x2-2x-3≤0,x∈R},B={x|(x-m+2)(x-m-2)≤0,x∈R,m∈R}.
(1)若A∩B={x|0≤x≤3},求實(shí)數(shù)m的值;
(2)若A⊆∁RB,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)數(shù)列{$\frac{{a}_{n}}{n}$}是公差為d的等差數(shù)列,前n項(xiàng)和為Sn,若a3=1,a9=12,則S12=( 。
A.$\frac{1}{9}$B.$\frac{2}{3}$C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.B.$\frac{7π}{4}$C.$\frac{3π}{2}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)=$\frac{x}{a}$-sin2x的零點(diǎn)個(gè)數(shù)為11,則實(shí)數(shù)a的取值范圍是( 。
A.($\frac{9π}{4}$,$\frac{13π}{4}$)B.(-$\frac{7π}{2}$,-$\frac{5π}{2}$)∪($\frac{5π}{2}$,$\frac{7π}{2}$)
C.(-$\frac{13π}{4}$,-$\frac{9π}{4}$)∪($\frac{9π}{4}$,$\frac{13π}{4}$)D.(-$\frac{13π}{4}$,-$\frac{9π}{4}$]∪[$\frac{9π}{4}$,$\frac{13π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ x+y≥0\\ x≤0\end{array}\right.$則z=3x+3y的最小值是( 。
A.0B.9C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知數(shù)列{lnan}是等差數(shù)列,數(shù)列{an}的前n項(xiàng)和為Sn,已知S3=a2+5a1,a7=2,則a5=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.直線x=$\frac{π}{2}$,x=$\frac{3π}{2}$,y=0及曲線y=cosx所圍成圖形的面積為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,兩坐標(biāo)系取相同單位,已知曲線C1的極坐標(biāo)方程為ρ2-4ρcosθ=0,已知點(diǎn)A的極坐標(biāo)為(3$\sqrt{2}$,$\frac{π}{4}$),直線l的極坐標(biāo)方程為ρcos(θ-$\frac{π}{4}$)=a,且點(diǎn)A在直線l上.
(1)把曲線C1的極坐標(biāo)方程化為參數(shù)方程;
(2)求曲線C1上任意一點(diǎn)到直線l的距離的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案