【題目】已知函數(shù)f(x)=2cos2x+2 sinxcosx+a,且當(dāng) 時,f(x)的最小值為2.
(1)求a的值,并求f(x)的單調(diào)增區(qū)間;
(2)將函數(shù)y=f(x)的圖象上各點的縱坐標(biāo)保持不變,橫坐標(biāo)縮短到原來的 ,再把所得圖象向右平移 個單位,得到函數(shù)y=g(x),求方程g(x)=2在區(qū)間 上的所有根之和.

【答案】
(1)解:f(x)=2cos2x+2 sinxcosx+a

=cos2x+1+ sin2x+a

=2sin(2x+ )+a+1,

∵x∈[0, ],

∴2x+ ∈[ , ],

∴f(x)min=a+2=2,故a=0,

∴f(x)=2sin(2x+ )+1,

由2kπ﹣ ≤2x+ ≤2kπ+ (k∈Z),

解得:kπ﹣ ≤x≤kπ+ (k∈Z),

故f(x)的單調(diào)增區(qū)間是[kπ﹣ ,kπ+ ](k∈Z)


(2)解:g(x)=2sin[4(x﹣ )+ ]+1=2sin(4x﹣ )+1,

由g(x)=2得sin(4x﹣ )=

則4x﹣ =2kπ+ 或2kπ+ (k∈Z),

解得x= + + ,(k∈Z);

∵x∈[0, ],

∴x= ,故方程所有根之和為 + =


【解析】(1)利用三角函數(shù)中的恒等變換應(yīng)用,可求得f(x)=2sin(2x+ )+a+1,x∈[0, ]時f(x)的最小值為2,可求得a,利用正弦函數(shù)的單調(diào)性可求f(x)的單調(diào)增區(qū)間;(2)利用函數(shù)y=Asin(ωx+φ)的圖象變換,可求得g(x)=2sin(4x﹣ )+1,依題意,g(x)=2得sin(4x﹣ )= ,x∈[0, ],可求得x= ,從而可得答案.
【考點精析】利用函數(shù)y=Asin(ωx+φ)的圖象變換對題目進(jìn)行判斷即可得到答案,需要熟知圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,則導(dǎo)函數(shù)f′(x)是(
A.僅有最小值的奇函數(shù)
B.既有最大值,又有最小值的偶函數(shù)
C.僅有最大值的偶函數(shù)
D.既有最大值,又有最小值的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ADBCD,下列條件:

①∠B+∠DAC=90°,

②∠B=∠DAC,

AB2BD·BC.

其中一定能夠判定△ABC是直角三角形的共有(  )

A. 3個 B. 2個 C. 1個 D. 0個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知y=f(x)是奇函數(shù),當(dāng)x∈(0,2)時,f(x)=lnx﹣ax(a> ),當(dāng)x∈(﹣2,0)時,f(x)的最小值為1,則a的值等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點在原點,焦點在軸上,且拋物線上有一點到焦點的距離為5.

(1)求該拋物線的方程;

(2)已知拋物線上一點,過點作拋物線的兩條弦,且,判斷直線是否過定點?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把函數(shù)y=sin(x﹣ )的圖象向左平移 個單位長度,再將圖象上所有點的橫坐標(biāo)縮短為原來的 倍(縱坐標(biāo)不變)得到函數(shù)f(x)的圖象. (Ⅰ)寫出函數(shù)f(x)的解析式;
(Ⅱ)若x∈[0, ]時,關(guān)于x的方程f(x)﹣m=0有兩個不等的實數(shù)根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中, 平面經(jīng)過,直線,則平面截該正方體所得截面的面積為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,求處的切線方程;

(2)若在區(qū)間上恰有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是公差不為0的等差數(shù)列的前項和,且成等比數(shù)列,.

(1)求數(shù)列的通項公式;

(2)設(shè)是數(shù)列的前項和,求使得對所有都成立的最小正整數(shù).

查看答案和解析>>

同步練習(xí)冊答案