3.比較下列三個(gè)數(shù)tan(sin$\frac{π}{6}$),tan(cos$\frac{π}{6}$),tan(tan$\frac{π}{6}$)的大。

分析 根據(jù)正切函數(shù)的單調(diào)性和特殊角的三角函數(shù)值,即可比較.

解答 解:sin$\frac{π}{6}$=$\frac{1}{2}$,cos$\frac{π}{6}$=$\frac{\sqrt{3}}{2}$,tan$\frac{π}{6}$=$\frac{\sqrt{3}}{3}$,
∴0<sin$\frac{π}{6}$<tan$\frac{π}{6}$<cos$\frac{π}{6}$<$\frac{π}{2}$,
∵y=tanx在(0,$\frac{π}{2}$)為增函數(shù),
∴tan(sin$\frac{π}{6}$)<tan(tan$\frac{π}{6}$)<tan(cos$\frac{π}{6}$).

點(diǎn)評 本題主要考察了正切函數(shù)的單調(diào)性和特殊角的三角函數(shù)值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在空間直角坐標(biāo)系中,點(diǎn)A(-1,2,0)和點(diǎn)B(3,-2,2)的距離為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.計(jì)算:
(1)log2.56.25+lg$\frac{1}{100}$+ln$\sqrt{e}$+${2}^{1+lo{g}_{2}3}$
(2)0.027${\;}^{\frac{1}{3}}$-(-$\frac{1}{7}$)2+256${\;}^{\frac{3}{4}}$-3-1+(2-1)0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如果平面α∥平面β,直線m?α,直線n?β,那么直線m,n的位置關(guān)系是( 。
A.平行B.異面C.平行或異面D.相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)y=a-bsin(4x-$\frac{π}{3}$)的最大值是5,最小值是1,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知復(fù)數(shù)a+bi與3+(4-k)i相等,且a+bi的實(shí)部、虛部分別是方程x2-4x-3=0的兩根,試求:a,b,k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=ax2+bx+c(a≠0),當(dāng)n∈N時(shí),數(shù)列f(n+1)-f(n)( 。
A.是等差數(shù)列B.是等比數(shù)列C.是常數(shù)列D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合P={n|n=2k-1,k∈N+,k≤50},Q={2,3,5},則集合T={xy|x∈P,y∈Q}中元素的個(gè)數(shù)為( 。
A.147B.140C.130D.117

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)線中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸建立坐標(biāo)系.已知直線與橢圓的極坐標(biāo)方程分別為l:cosθ+2sinθ=0,C:ρ2=$\frac{4}{co{s}^{2}θ+4si{n}^{2}θ}$.
(1)求直線與橢圓的直角坐標(biāo)方程;
(2)若P是橢圓C上的一個(gè)動(dòng)點(diǎn),求P到直線l距離的最大值.

查看答案和解析>>

同步練習(xí)冊答案