20.已知函數(shù)f(x)=|2x+1|+|2x-3|
(Ⅰ)求不等式f(x)≤6的解集;
(Ⅱ)若對任意x∈[-$\frac{1}{2}$,1],不等式f(x)=|2x+a|-4恒成立,求實數(shù)a的取值范圍.

分析 (Ⅰ)通過對x取值的分類討論,去掉絕對值符號,即可求得不等式f(x)≤6的解集;
(Ⅱ)利用等價轉(zhuǎn)化思想,可得|2x+a|≤8,從而求出實數(shù)a的取值范圍.

解答 解:(Ⅰ)當(dāng)x≤-$\frac{1}{2}$時,-2x-1-2x+3≤6⇒x≥-1;
當(dāng)-$\frac{1}{2}$<x<$\frac{3}{2}$時,-2x-1+2x-3≤6恒成立;
當(dāng)x≥$\frac{3}{2}$時,2x+1+2x-3≤6⇒x≤2,
綜上,解集為[-1,2];
(Ⅱ)f(x)≥|2x+a|-4?|2x+a|≤8
即-8≤2x+a≤8⇒$\left\{\begin{array}{l}{a-1≥-8}\\{a+2≤8}\end{array}\right.$⇒-7≤a≤6.

點評 本題考查絕對值不等式的解法,著重考查等價轉(zhuǎn)化思想、分類討論思想與綜合運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ksin(2x+$\frac{π}{6}$)的圖象過點(π,1).
(1)當(dāng)x∈[0,$\frac{π}{2}$]時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求函數(shù)g(x)=$\frac{1}{2}$f2(x)-f(x+$\frac{π}{4}$)-1的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.(x+2$\sqrt{x}$)5 的展開式中,x3的系數(shù)是80.(用數(shù)字填寫答案)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知二項式(x+3x2n,若它的二項式系數(shù)之和為128.
(1)求展開式中二項式系數(shù)最大的項;
(2)求展開式中系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù).
①cos211°+sin241°-cos11°sin41°;
②cos222°+sin252°-cos22°sin52°;
③cos230°+sin260°-cos30°sin60°;
④cos244°+sin244°-cos44°sin74°;
⑤cos255°+sin285°-cos55°sin85°.
將該同學(xué)的發(fā)現(xiàn)推廣三角恒等式為cos2α+sin2(α+30°)-cosαsin(α+30°)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某工廠經(jīng)過技術(shù)改造后,生產(chǎn)某種產(chǎn)品的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸標(biāo)準(zhǔn)煤)有如下幾組樣本數(shù)據(jù),
x3456
y2.5344.5
據(jù)相關(guān)性檢驗,這組樣本數(shù)據(jù)具有線性相關(guān)關(guān)系,通過線性回歸分析,求得回歸直線的斜率為0.7,那么這組數(shù)據(jù)的回歸直線方程是$\widehat{y}$=0.7x+0.35.
(參考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}y}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列命題中,正確的是(  )
A.若a>b,c>d,則ac>bcB.若ac>bc,則a>b
C.若$\frac{a}{{c}^{2}}$<$\frac{{c}^{2}}$,則a<bD.若a>b,c>d,則a-c>b-d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.定義在R上的奇函數(shù)y=f(x)滿足f(3)=0,且當(dāng)x>0時,不等式f(x)>-xf′(x)恒成立,則函數(shù)g(x)=xf(x)的零點的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求函數(shù)y=$\frac{1}{\sqrt{1-lo{g}_{3}({2}^{x}-1)}}$的定義域.

查看答案和解析>>

同步練習(xí)冊答案