分析 (1)求出f(x)的導數(shù),由切線垂直的條件:斜率之積為-1,求得a;求得g(x)的導數(shù),由恒成立思想,可得b的值;
(2)畫出y=h(x)與y=k(x-1)的圖象,求出相切的情況,求得k的值,結合圖象觀察即可得到k的范圍.
解答 解:(1)f′(x)=2x+a,∴f′(0)f′(1)=-1,即a(a+2)=-1,a=-1;
g(x)=x2-x+$\frac{2}$lnx-bx,g′(x)=2x-1+$\frac{2x}$-b≥0在x>0上恒成立,即(2x-1)(1-$\frac{2x}$)≥0,
當x≥$\frac{1}{2}$時,b≤2x,即b≤1;當0<x≤$\frac{1}{2}$時,b≥2x,即b≥1,故b=1.(6分)
(2)y=h(x)與y=k(x-1)有四個交點.
如圖,設直線y=k(x-1)與曲線y=-ln(1-x)切于(x0,-ln(1-x0)),
則k=-$\frac{-1}{{1-{x_0}}}$=$\frac{1}{{1-{x_0}}}$,
∴-ln(1-x0)=$\frac{1}{{1-{x_0}}}$(x0-1)=-1,$\frac{1}{{1-{x_0}}}$=$\frac{1}{e}$,
由圖可得k∈(0,$\frac{1}{e}$).(12分)
點評 本題考查導數(shù)的運用:求切線的斜率和單調性,考查函數(shù)方程的轉化思想的運用,以及數(shù)形結合的思想方法,考查運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
顧客人數(shù)/商品 | 甲 | 乙 | 丙 | 丁 |
100 | √ | × | √ | √ |
217 | × | √ | × | √ |
200 | √ | √ | √ | × |
300 | √ | × | √ | × |
85 | √ | × | × | × |
98 | × | √ | × | × |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{n}^{3}}{3}+\frac{{n}^{2}}{2}+\frac{n}{6}+1+\frac{1}{{2}^{n}}$ | B. | $\frac{{n}^{3}}{3}+\frac{{n}^{2}}{2}+\frac{n}{6}+1$-$\frac{1}{{2}^{n}}$ | ||
C. | $\frac{{n}^{3}}{3}+\frac{{n}^{2}}{2}+\frac{n}{6}+1$+$\frac{1}{{2}^{n-1}}$ | D. | $\frac{{n}^{3}}{3}+\frac{{n}^{2}}{2}+\frac{n}{6}+1$-$\frac{1}{{2}^{n-1}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
空氣污染指數(shù) (單位:μg/m3) | [0,50] | (50,100] | (100,150] | (150,200] |
監(jiān)測點個數(shù) | 15 | 40 | y | 10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{y^2}{5}+\frac{x^2}{4}=1$ | B. | $\frac{x^2}{12}+\frac{y^2}{3}=1$ | C. | x2=-12y | D. | $\frac{y^2}{6}-\frac{x^2}{3}=1$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 容量,方差 | B. | 容量,平均數(shù) | C. | 平均數(shù),容量 | D. | 標準差,平均數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com