7.已知等差數(shù)列{an}滿足a2+a8=10,且a1,a2,a4成等比數(shù)列,則a2016=( 。
A.2014B.2015C.2016D.2017

分析 由a2+a8=10,結(jié)合等差數(shù)列的性質(zhì)求得a5=5,再由a1,a2,a4成等比數(shù)列求得公差,代入等差數(shù)列的通項(xiàng)公式求得a2016

解答 解:設(shè)等差數(shù)列{an}的公差為d,
∵a2+a8=10,∴2a5=10,得a5=5,
∵a1,a2,a4成等比數(shù)列,∴${a_2}^2={a_1}•{a_4}$,即:(5-3d)2=(5-4d)(5-d),
解得:d=1,
∴a2016=a5+2011×1=2016.
故選:C.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式,考查等差數(shù)列的前n項(xiàng)和,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知復(fù)數(shù)$\frac{a+i}{1-i}$為純虛數(shù),那么實(shí)數(shù)a=(  )
A.-1B.$-\frac{1}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)f(x)與g(x)都是定義在區(qū)間[x1,x2]上的函數(shù),若對(duì)任意x∈[x1,x2],都有(f(x)+g(x))2≤2,則稱f(x)和g(x)為“2度相關(guān)函數(shù)”.若函數(shù)f(x)與函數(shù)g(x)=x+2在[1,2]上為“2度相關(guān)函數(shù)”,則函數(shù)f(x)的解析式可以為( 。
A.f(x)=x2+2x+1B.f(x)=-3x+2C.f(x)=-x2+2x-4D.f(x)=x+lnx-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,已知∠A=30°,AB=4$\sqrt{3}$,若△ABC為銳角三角形,則AC邊長可能值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在數(shù)列{an}中,設(shè)S1=a1+a2+a3+a4+…+an,S2=an+1+an+2+an+3+…+a2n,S3=a2n+1+a2n+3+…+a3n
(1)如果{an}是以d為公差的等差數(shù)列,求證S1,S2,S3也是等差數(shù)列,并求其公差;
(2)如果{an}是以q為公比的等比數(shù)列,求證S1,S2,S3也是等比數(shù)列,并求其公比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知$\overrightarrow{a}$•$\overrightarrow$=1,且|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1
(1)求向量$\overrightarrow{a}$與$\overrightarrow$的夾角;
(2)求|$\overrightarrow{a}$-2$\overrightarrow$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知等差數(shù)列{an}前9項(xiàng)的和為27,則2a8-a11=( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知復(fù)數(shù)z滿足z2=-3,若z的虛部大于0,則z=$\sqrt{3}i$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,acosC+$\sqrt{3}$asinC-b-c=0.
(1)求角A;
(2)若a=2,△ABC的面積為$\sqrt{3}$,求b,c.

查看答案和解析>>

同步練習(xí)冊(cè)答案