9.函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x}-2,(x≤1)}\\{lo{g}_{3}(x-1),(x>1)}\end{array}\right.$,則f(f($\frac{5}{3}$))=( 。
A.$\frac{5}{3}$B.$\frac{2}{3}$C.-$\frac{5}{3}$D.-$\frac{4}{3}$

分析 先求出f($\frac{5}{3}$)=log3$\frac{2}{3}$,從而f(f($\frac{5}{3}$))=f($lo{g}_{3}\frac{2}{3}$),由此能求出結(jié)果.

解答 解:∵f(x)=$\left\{\begin{array}{l}{{3}^{x}-2,(x≤1)}\\{lo{g}_{3}(x-1),(x>1)}\end{array}\right.$,
∴f($\frac{5}{3}$)=log3$\frac{2}{3}$,
f(f($\frac{5}{3}$))=f($lo{g}_{3}\frac{2}{3}$)
=${3}^{lo{g}_{3}\frac{2}{3}}$-2=$\frac{2}{3}-2=-\frac{4}{3}$.
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)cos($\frac{π}{4}$-x)=$\frac{3}{5}$,那么sin2x=$-\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知點(diǎn)A(1,1)和坐標(biāo)原點(diǎn)O,若點(diǎn)B(x,y)滿足$\left\{\begin{array}{l}{x+2y≥8}\\{2x-y+3≥0}\\{x-y≤3}\end{array}\right.$,則x2+y2-2x-2y的最小值是(  )
A.$\sqrt{5}$-2B.3C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)有限集合A={a1,a2,..,an},則a1+a2+…+an叫做集合A的和,記作SA,若集合P={x|x=2n-1,n∈N*,n≤4},集合P的含有3個(gè)元素的全體子集分別記為P1,P2,…,Pk,則P1+P2+…+Pk=48.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知數(shù)列{an}中,a1=1,an+1=$\frac{a_n}{{1+2{a_n}}}$,則a6=$\frac{1}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知U={x|x>-1},A={x||x-2|<1},則∁UA={x|-1<x≤1或x≥3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)關(guān)于x的方程x2+px-12=0和x2+qx+r=0的解集分別是A、B,且A≠B.A∪B={-3,2,4},A∩B={-3}.求p,q,r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x∈N|1≤x≤10},B是A的子集,且B中各元素的和為8,則滿足條件的集合B共有( 。
A.8個(gè)B.7個(gè)C.6個(gè)D.5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知向量$\overrightarrow{OP}$=(2cos($\frac{π}{2}$+x),1),$\overrightarrow{OQ}$=(sin($\frac{3π}{2}$-x),cos2x),定義函數(shù)f(x)=$\overrightarrow{OP}$•$\overrightarrow{OQ}$
(1)求函數(shù)f(x)的表達(dá)式,并指出其最值;
(2)已知$f(\frac{x}{2})=\frac{1}{5},x∈(-\frac{π}{2},0),求f(-\frac{x}{2})$.
(3)在銳角三角形ABC中,角A,B,C的對(duì)邊分別為a,b,c,且f(A)=1,bc=8,求△ABC的面積S.

查看答案和解析>>

同步練習(xí)冊(cè)答案