5.已知sin20°=a,則sin50°等于(  )
A.1-2a2B.1+2a2C.1-a2D.a2-1

分析 利用誘導(dǎo)公式及二倍角的余弦函數(shù)公式化簡所求即可得解.

解答 解:∵sin20°=a,
∴sin50°=cos40°=1-2sin220°=1-2a2
故選:A.

點(diǎn)評(píng) 本題主要考查了誘導(dǎo)公式及二倍角的余弦函數(shù)公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)=$\frac{1+2lnx}{{x}^{2}}$.
(1)求f(x)的單調(diào)區(qū)間;
(2)令g(x)=ax2-2lnx,則g(x)=1時(shí)有兩個(gè)不同的根,求a的取值范圍;
(3)存在x1,x2∈(1,+∞)且x1≠x2,使|f(x1)-f(x2)|≥k|lnx1-lnx2|成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}為等比數(shù)列,其前n項(xiàng)和為Sn,且S1,S2的等差中項(xiàng)為S3,若8(a1+a3)=-5.
(1)求數(shù)列[an]的通項(xiàng)公式;
(2)記Rn=|$\frac{1}{a_1}|+|\frac{2}{a_2}|+|\frac{3}{a_3}|+…+|\frac{n}{a_n}$|,對(duì)于任意的n≥2,n∈N*,不等式m(Rn-n-1)≥(n-1)2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.計(jì)算:
(1)(-2015)0+($\frac{3}{2}$)-2•$\root{3}{(3\frac{3}{8})^{2}}$-$\frac{1}{\sqrt{0.01}}$+$\sqrt{{9}^{3}}$;
(2)2log32-log3$\frac{32}{9}$+log38-5${\;}^{lo{g}_{5}3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=1+lnx-$\frac{k(x-2)}{x}$(k∈R),g(x)=x+$\frac{8}{x}$.
(1)若函數(shù)f(x)有極值,求實(shí)數(shù)k的取值范圍:
(2)若當(dāng)x>2時(shí),f(x)>0恒成立,求證:當(dāng)實(shí)數(shù)k取最大整數(shù)且x>2時(shí),g(x)>f(x)+3.(參考數(shù)據(jù)ln8=2.08,ln9=2.20,ln10=2.30)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知雙曲線C過點(diǎn)$(3,\sqrt{2})$,且與雙曲線$\frac{x^2}{6}-\frac{y^2}{2}=1$有共同的漸近線,則雙曲線C的標(biāo)準(zhǔn)方程為$\frac{x^2}{3}-{y^2}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)a,b∈R,集合{a,1}={0,a+b},則a-b=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某商場(chǎng)2014年一月份到十二月份銷售額呈現(xiàn)先下降后上升的趨勢(shì),下列函數(shù)模型中能較準(zhǔn)確反映該商場(chǎng)月銷售額f(x)與月份x關(guān)系的是(  )
A.f(x)=a•bn(b>0,且b≠1)B.f(x)=lognx+b(a>0,且a≠1)
C.f(x)=x2+ax+bD.f(x)=$\frac{a}{x}+b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,ABCD為正方形,則該四棱錐中互相垂直的平面有6組.

查看答案和解析>>

同步練習(xí)冊(cè)答案