已知定義在(0,+∞)上的函數(shù)滿足f(
x1
x2
)=f(x1)-f(x2),且當(dāng)x>1時(shí),f(x)<0,求f(x)的單調(diào)性.
考點(diǎn):抽象函數(shù)及其應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:不妨設(shè)x1>x2>0,則
x1
x2
>1
,根據(jù)條件得到f(
x1
x2
)=f(x1)-f(x2),又當(dāng)x>1時(shí),f(x)<0,從而得到
f(x1)<f(x2),由函數(shù)的單調(diào)性定義即可得到結(jié)論.
解答: 解:令x1>x2>0,
x1
x2
>1

∵定義在(0,+∞)上的函數(shù)f(x)滿足f(
x1
x2
)=f(x1)-f(x2),
∴f(
x1
x2
)=f(x1)-f(x2),
又當(dāng)x>1時(shí),f(x)<0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
由函數(shù)的單調(diào)性定義,得,
函數(shù)f(x)在(0,+∞)上是單調(diào)減函數(shù).
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性及運(yùn)用,注意定義的應(yīng)用,考查解決抽象函數(shù)的常用方法,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Ω為平面直角坐標(biāo)系xOy中的點(diǎn)集,從Ω中的任意一點(diǎn)P作x軸、y軸的垂線,垂足分別為M,N,記點(diǎn)M的橫坐標(biāo)的最大值與最小值之差為x(Ω),點(diǎn)N的縱坐標(biāo)的最大值與最小值之差為y(Ω).如果Ω是邊長(zhǎng)為1的正方形,那么x(Ω)+y(Ω)的取值范圍是( 。
A、[
2
,2
2
]
B、[2,2
2
]
C、[1,
2
]
D、[1,2
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式ax2+ax-1<0對(duì)一切x∈R恒成立,則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,0)
B、(-∞,0]
C、(-4,0)
D、(-4,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=a-bcos(2x+
π
6
)(b>0)的最大值為
3
2
,最小值為-
1
2

(1)求a,b的值;
(2)已知函數(shù)g(x)=-4asin(bx-
π
3
),當(dāng)g(x)≥-1時(shí)求自變量x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)圓錐的側(cè)面積是它的內(nèi)切球的表面積的2倍,求它的側(cè)面積與底面積的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|-1≤x<6},B={x|m-1≤x≤3m+2},若B⊆A,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此作了四次試驗(yàn)如下:
零件的個(gè)數(shù)x(個(gè)) 2 3 4 5
加工的時(shí)間y(小時(shí)) 2.5 3 4 4.5
(1)在給定坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;
(2)求y關(guān)于x的線性回歸方程
y
=
b
x+
a
;
(3)試預(yù)測(cè)加工10個(gè)零件需要多少時(shí)間?(
b
=
n
i-1
xiyi-n
.
x
.
y
n
i-1
x
2
i
-n(
.
x
)2
,
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是正數(shù)組成的數(shù)列,其前n項(xiàng)和為Sn,且對(duì)所有的正整數(shù)n,an與2的等差中項(xiàng)等于Sn與2的等比中項(xiàng),求:數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若α∈(
π
2
,π),tan(α+
π
4
)=
1
7
,則sinα=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案