【題目】已知函數(shù)f(x)=|2x﹣1|﹣3|x+1|,設(shè)f(x)的最大值為M.
(1)求M;
(2)若正數(shù)a,b滿足Mab,證明:a4b+ab4.
【答案】(1)M=3(2)證明見(jiàn)解析;
【解析】
(1)由f(x)=|2x﹣1|﹣3|x+1|=|2x﹣1|﹣|2x+2|﹣|x+1|,結(jié)合絕對(duì)值不等式的性質(zhì)和絕對(duì)值的幾何意義,可得所求最大值;
(2)由(1)可得3ab,a4b+ab4=ab(a3+b3)()(a3+b3),再由基本不等式即可得證.
解:(1)函數(shù)f(x)=|2x﹣1|﹣3|x+1|
=|2x﹣1|﹣|2x+2|﹣|x+1|≤|2x﹣1﹣2x﹣2|﹣|﹣1+1|=3,
當(dāng)x=﹣1時(shí),f(x)取得最大值3,即M=3;
(2)證明:正數(shù)a,b滿足3ab,
故a4b+ab4=ab(a3+b3)()(a3+b3)(1+1)
(2+2),當(dāng)且僅當(dāng)a=b時(shí)等號(hào)成立,
故a4b+ab4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面向量,共線的充要條件是( )
A.
B.,兩向量中至少有一個(gè)為零向量
C.λ∈R,
D.存在不全為零的實(shí)數(shù)λ1,λ2,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年情況特殊,小王在居家自我隔離時(shí)對(duì)周邊的水產(chǎn)養(yǎng)殖產(chǎn)業(yè)進(jìn)行了研究.、兩個(gè)投資項(xiàng)目的利潤(rùn)率分別為投資變量和.根據(jù)市場(chǎng)分析,和的分布列分別為:
5% | 10% | |||
0.8 | 0.2 | |||
2% | 8% | 12% | ||
0.2 | 0.5 | 0.3 | ||
(1)若在兩個(gè)項(xiàng)目上各投資萬(wàn)元,和分別表示投資項(xiàng)目和所獲得的利潤(rùn),求方差,;
(2)若在兩個(gè)項(xiàng)目上共投資萬(wàn)元,那么如何分配,能使投資項(xiàng)目所得利潤(rùn)的方差與投資項(xiàng)目所得利潤(rùn)的方差的和最小,最小值是多少?
(注:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某項(xiàng)數(shù)學(xué)競(jìng)賽考試共四道題,考察內(nèi)容分別為代數(shù)、幾何、數(shù)論、組合,已知前兩題每題滿分40分,后兩題每題滿分60分,題目難度隨題號(hào)依次遞增,已知學(xué)生甲答題時(shí),若該題會(huì)做則必得滿分,若該題不會(huì)做則不作答得0分,通過(guò)對(duì)學(xué)生甲以往測(cè)試情況的統(tǒng)計(jì),得到他在同類(lèi)模擬考試中各題的得分率,如表所示:
假設(shè)學(xué)生甲每次考試各題的得分相互獨(dú)立.
(1)若此項(xiàng)競(jìng)賽考試四道題的順序依次為代數(shù)、幾何、數(shù)論、組合,試預(yù)測(cè)學(xué)生甲考試得160分的概率;
(2)學(xué)生甲研究該項(xiàng)競(jìng)賽近五年的試題發(fā)現(xiàn)第1題都是代數(shù)題,于是他在賽前針對(duì)代數(shù)版塊進(jìn)行了強(qiáng)化訓(xùn)練,并取得了很大進(jìn)步,現(xiàn)在,只要代數(shù)題是在試卷第1、2題的位置,他就一定能答對(duì),若今年該項(xiàng)數(shù)學(xué)競(jìng)賽考試四道題的順序依次為代數(shù)、數(shù)論、組合、幾何,試求學(xué)生甲此次考試得分X的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)從下面三個(gè)條件中任選一個(gè),補(bǔ)充在下面的橫線上,并解答.
①
②
③的面積為
在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知b-c=2,cosA=, .
(1)求a;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,,分別為,的中點(diǎn)是由繞直線旋轉(zhuǎn)得到,連結(jié),,.
(1)證明:平面;
(2)若,棱上是否存在一點(diǎn),使得?若存在,確定點(diǎn) 的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)任意,給定區(qū)間,設(shè)函數(shù)表示實(shí)數(shù)與所屬的給定區(qū)間內(nèi)唯一整數(shù)之差的絕對(duì)值.
(1)當(dāng)時(shí),求出的解析式;時(shí),寫(xiě)出絕對(duì)值符號(hào)表示的解析式;
(2)求,,判斷函數(shù)的奇偶性,并證明你的結(jié)論;
(3)當(dāng)時(shí),求方程的實(shí)根.(要求說(shuō)明理由,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國(guó)際上常用的衡量人體胖瘦程度以及是否健康的一個(gè)標(biāo)準(zhǔn).對(duì)于高中男體育特長(zhǎng)生而言,當(dāng)數(shù)值大于或等于20.5時(shí),我們說(shuō)體重較重,當(dāng)數(shù)值小于20.5時(shí),我們說(shuō)體重較輕,身高大于或等于我們說(shuō)身高較高,身高小于170cm我們說(shuō)身高較矮.
(Ⅰ)已知某高中共有32名男體育特長(zhǎng)生,其身高與指數(shù)的數(shù)據(jù)如散點(diǎn)圖,請(qǐng)根據(jù)所得信息,完成下述列聯(lián)表,并判斷是否有的把握認(rèn)為男生的身高對(duì)指數(shù)有影響.
身高較矮 | 身高較高 | 合計(jì) | |
體重較輕 | |||
體重較重 | |||
合計(jì) |
(Ⅱ)①?gòu)纳鲜?/span>32名男體育特長(zhǎng)生中隨機(jī)選取8名,其身高和體重的數(shù)據(jù)如表所示:
編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
體重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請(qǐng)完善下列殘差表,并求(解釋變量(身高)對(duì)于預(yù)報(bào)變量(體重)變化的貢獻(xiàn)值)(保留兩位有效數(shù)字);
編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
體重(kg) | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
殘差 |
②通過(guò)殘差分析,對(duì)于殘差的最大(絕對(duì)值)的那組數(shù)據(jù),需要確認(rèn)在樣本點(diǎn)的采集中是否有人為的錯(cuò)誤,已知通過(guò)重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應(yīng)該為.小明重新根據(jù)最小二乘法的思想與公式,已算出,請(qǐng)?jiān)谛∶魉愕幕A(chǔ)上求出男體育特長(zhǎng)生的身高與體重的線性回歸方程.
參考數(shù)據(jù):
,,,,
參考公式:,,,,.
0.10 | 0.05 | 0.01 | 0.005 | |
2.706 | 3.811 | 6.635 | 7.879 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com