10.已知$|{\overrightarrow a}|=\sqrt{3},|{\overrightarrow b}|=2$,$|{\overrightarrow a}|$與$|{\overrightarrow b}|$夾角為30°,則$|{\overrightarrow a-2\overrightarrow b}|$=$\sqrt{7}$.

分析 利用數(shù)量積的定義及其運(yùn)算性質(zhì)即可得出.

解答 解:∵$|{\overrightarrow a}|=\sqrt{3},|{\overrightarrow b}|=2$,$|{\overrightarrow a}|$與$|{\overrightarrow b}|$夾角為30°,
∴$\overrightarrow{a}•\overrightarrow$=$2\sqrt{3}×cos3{0}^{°}$=3.
則$|{\overrightarrow a-2\overrightarrow b}|$=$\sqrt{{\overrightarrow{a}}^{2}+4{\overrightarrow}^{2}-4\overrightarrow{a}•\overrightarrow}$=$\sqrt{3+4×{2}^{2}-4×3}$=$\sqrt{7}$.
故答案為:$\sqrt{7}$.

點(diǎn)評(píng) 本題考查了數(shù)量積的定義及其運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知命題p:“方程x2-ax+a+3=0有解”,q:“$\frac{1}{4^x}+\frac{1}{2^x}$-a≥0在[0,+∞)上恒成立”,若p或q為真命題,p且q為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在下列各結(jié)論中,正確的是(  )
①“p∧q”為假是“p∨q”為假的充分不必要條件;
②“p∧q”為真是“p∨q”為真的充分不必要條件;
③“p∨q”為真是“?p”為假的必要不充分條件;
④“?p”為真是“p∧q”為假的必要不充分條件.
A.①②B.②④C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如果命題p∨q與命題p都是真命題,那么(  )
A.命題p不一定是假命題B.命題q一定為真命題
C.命題q不一定是真命題D.命題p與命題q的真假相同

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.下列命題:
①函數(shù)y=2sin($\frac{π}{3}$-x)-cos($\frac{π}{6}$+x)的最小值等于-1;
②函數(shù)y=sinπxcosπx是最小正周期為2的奇函數(shù);
③函數(shù)y=sin(x+$\frac{π}{4}$)在區(qū)間[0,$\frac{π}{2}$]上單調(diào)遞增;
④若sin2α<0,cosα-sinα<0,則α一定為第二象限角;
正確的個(gè)數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在數(shù)列{an}中,a1=1,$\frac{1}{a_n}-\frac{1}{{{a_{n+1}}}}=\frac{2}{{{a_n}{a_{n+1}}}}(n∈{N^*})$.
(Ⅰ)求證數(shù)列{an}為等差數(shù)列,并求它的通項(xiàng)公式;
(Ⅱ)${b_n}=\frac{1}{a_n^2}$,求證:${b_1}+{b_2}+…+{b_n}<\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列各組函數(shù)表示相等函數(shù)的是(  )
A.$f(x)=\left\{{\begin{array}{l}{x,x>0}\\{-x,x<0}\end{array}}\right.$與 g(x)=|x|B.f(x)=2x-1與 $g(x)=\frac{{2{x^2}-x}}{x}$
C.f(x)=|x-1|與 $g(t)=\sqrt{{{(t-1)}^2}}$D.$f(x)=\frac{x-1}{x-1}$與g(t)=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)計(jì)算:${(2\frac{7}{9})^{\frac{1}{2}}}+{(lg5)^0}+{(\frac{27}{64})^{-\;\frac{1}{3}}}$;
(2)計(jì)算:$2lg2+lg25-ln\sqrt{e}+{2^{1+{{log}_2}3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=sin2x+2$\sqrt{3}$sinxcosx-cos2x,求:
(1)它的最小正周期;
(2)它的最值;
(3)并指出在區(qū)間[0,π]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案