5.已知定義在R上的奇函數(shù)f(x)的圖象為一條連續(xù)不斷的曲線,f(1+x)=f(1-x),f(1)=a,且當(dāng)0<x<1時,f(x)的導(dǎo)函數(shù)f′(x)滿足:f′(x)<f(x),則f(x)在[2015,2016]上的最大值為( 。
A.aB.0C.-aD.2016

分析 求出函數(shù)的周期,結(jié)合函數(shù)在0<x<1時,f(x)遞減,求出f(x)在[2015,2016]上的單調(diào)性,從而求出函數(shù)的最大值即可.

解答 解:∵定義在R上的函數(shù)f(x)是奇函數(shù),
滿足f(-x)+f(x)=0,
∴f(-x)=-f(x),
∵f(x+1)=f(1-x),
∴f(x+2)=f[(x+1)+1]=f[1-(x+1)]=f(-x)=-f(x),
即f(x+2)=-f(x),
f(x+4)=-f(x+2),
∴f(x+4)=f(x),
∴函數(shù)的周期為4,
0<x<1時,f(x)的導(dǎo)函數(shù)f′(x)滿足:f′(x)<0,
∴f(x)在(0,1)遞減,即f(x)在[2015,2016]遞減,
∴f(x)在[2015,2016]上的最大值為f(2015),
∴f(2015)=f(4×504-1)=f(-1)=-f(1),
∵f(1)=a,∴f(2015)=-a,
故選:C.

點評 本題考查了函數(shù)的奇偶性、周期性、單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若直線kx-y-2k+4=0恒過定點P,冪函數(shù)y=f(x)也過點P,則f(x)的解析式為(  )
A.y=x2B.y=x3C.y=x-1D.y=$\sqrt{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=lnx-$\frac{1}{2}$mx2+x(m∈R).
(Ⅰ)若函數(shù)f(x)在(0,+∞)上沒有極值點,求實數(shù)m的取值范圍并且判斷單調(diào)性;
(Ⅱ)若關(guān)于x的不等式f(x)≤mx-1恒成立,求整數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.隨著旅游觀念的轉(zhuǎn)變和旅游業(yè)的發(fā)展,國民在旅游休閑方面的投入不斷增多,民眾對旅游的需求也不斷提高,安慶某社區(qū)居委會統(tǒng)計了2011至2015年每年春節(jié)期間外出旅游的家庭數(shù),具體統(tǒng)計資料如表:
年份(x)20112012201320142015
家庭數(shù)(y)610162226
(Ⅰ)從這5年中隨機抽取兩年,求外出旅游的家庭至少有1年多于20個的概率;
(Ⅱ)利用所給數(shù)據(jù),求出春節(jié)期間外出旅游的家庭數(shù)與年份之間的回歸直線方程$\hat y=bx+a$,并判斷它們之間是正相關(guān)還是負(fù)相關(guān);
(Ⅲ)利用(Ⅱ)中所求出的回歸直線方程估計該社區(qū)2016年在春節(jié)期間外出旅游的家庭數(shù).
參考公式:$b=\frac{{\sum_{i=1}^n{({x_i}-\bar x)({y_i}-\bar y)}}}{{\sum_{i=1}^n{{{({x_i}-\bar x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\bar x\bar y}}}{{\sum_{i=1}^n{{x_i}^2-{{\bar x}^2}}}}$,$\overline{y}=b\bar x+a$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.關(guān)于x的方程${x^2}+4xsin\frac{α}{2}+mtan\frac{α}{2}=0(0<α<π)$有兩個相等的實數(shù)根.
(1)求實數(shù)m的取值范圍;
(2)若$m+2cosα=\frac{4}{3}$,求$\frac{1+sin2α-cos2α}{1+tanα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若m,n是兩條不同的直線,m⊥平面α,則“m⊥n”是“n∥α”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,點P是△ABC所在平面外的一點,PA=PB=PC=AB=BC=AC=1,F(xiàn)為AP的中點.
(1)求異面直線PC與AB所成角的大。
(2)求異面直線AB與PC的距離;
(3)E為AB的中點,求CF與PE所成角的大;
(4)求P到平面ABC的距離;
(5)求F到平面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.焦點為A(0,8),B(6,4)的橢圓與x軸相切于P點,則P點坐標(biāo)為(4,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),若焦點F(c,0)關(guān)于漸近線y=$\frac{a}$x的對稱點在另一條漸近線y=-$\frac{a}$x上,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.2C.$\sqrt{3}$D.3

查看答案和解析>>

同步練習(xí)冊答案