5.設(shè)計(jì)一個算法,判斷一個正的n(n>2)位數(shù)是不是回文數(shù),用自然語言描述算法的步驟.

分析 回文數(shù)是指從右到左讀與從左到右讀都是一樣的正整數(shù),如121,676,94249等,利用循環(huán)結(jié)構(gòu)依次判斷x的第i位與第(n+1-i)位上的數(shù)字是不是相等即可.

解答 解:算法步驟如下:
第一步:輸入一個正整數(shù)x和它的位數(shù).
第二步:判斷n是不是偶數(shù),如果是偶數(shù),令m=$\frac{n}{2}$;如果是奇數(shù),令m=$\frac{n-1}{2}$.
第三步:當(dāng)i從1取到m值時,依次判斷x的第i位與第(n+1-i)位上的數(shù)字是不是相等,如果都相等,則x是回文數(shù),輸出“是回文數(shù)“,;否則,x不是回文數(shù),輸出“不是回文數(shù)“.結(jié)束.

點(diǎn)評 本題考察設(shè)計(jì)算法解決實(shí)際問題,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}各項(xiàng)均為正數(shù),且滿足a1=1,an+1=2an+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若點(diǎn)Pn(an,yn)(n∈N*)是曲線f(x)=$\frac{lo{g}_{2}(x+1)}{x+1}$(x>0)上的列點(diǎn),且點(diǎn)Pn(an,yn)在x軸上的射影為Qn(an,0)(n∈N*),設(shè)四邊形PnQnQn+1Pn+1的面積是Sn,求證:n∈N*時,$\frac{1}{{S}_{1}}$+$\frac{1}{2{S}_{2}}$+$\frac{1}{3{S}_{n}}$+…+$\frac{1}{n{S}_{n}}$<$\frac{7}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.三個數(shù)學(xué)愛好者各自出題給對方做.
甲出的題目是:(1)證明不等式$\frac{x}{1+x}$<ln(1+x)<x,x>0;
乙出的題目是:(2)在數(shù)列{an}中,已知a1=$\frac{1}{2}$,且$\frac{{a}_{n}{a}_{n-1}}{{a}_{n-1}-{a}_{n}}$=1+$\frac{1}{n^2-n-1}$,求數(shù)列{an}的通項(xiàng)公式an;
丙看完后出的題目是:在(2)中,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:-1+lnn<Sn≤$\frac{1}{2}$+lnn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知O是坐標(biāo)原點(diǎn),F(xiàn)是橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的一個焦點(diǎn),過F且與x軸垂直的直線與橢圓交于M,N兩點(diǎn),則cos∠MON的值為( 。
A.$\frac{5}{13}$B.-$\frac{5}{13}$C.$\frac{2\sqrt{13}}{13}$D.-$\frac{2\sqrt{13}}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若P(x,y)點(diǎn)滿足$\frac{{x}^{2}}{4}$+y2=1(y≥0)則$\frac{y-3}{x-4}$的范圍是$[\frac{3-\sqrt{3}}{3},\frac{3}{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=log2(2x-3)+3.
(1)求f(x)的定義域;
(2)求函數(shù)y=f(x),x∈[4,7]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.295是等差數(shù)列-5,-2,1,…的第( 。╉(xiàng).
A.99B.100C.101D.102

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知F1、F2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),橢圓上一點(diǎn)M滿足△MF1F2的周長為4+2$\sqrt{3}$,過橢圓上頂點(diǎn)與右頂點(diǎn)的直線與直線4x-2y+5=0垂直.
(1)求橢圓C的方程;
(2)若直線l交橢圓C于A,B兩點(diǎn),以AB為直徑的圓過原點(diǎn),求弦長|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.直線l過直線2x+y+8=0和直線x+y+3=0的交點(diǎn),且垂直于直線4x+14y-1=0,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案