【題目】將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的倍(橫坐標(biāo)不變),再向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,設(shè)函數(shù).
(1)對(duì)函數(shù)的解析式;
(2)若對(duì)任意,不等式恒成立,求的最小值;
(3)若在內(nèi)有兩個(gè)不同的解,,求的值(用含的式子表示).
【答案】(1)(2);(3)
【解析】
(1)將縱坐標(biāo)伸長(zhǎng)到原來(lái)的倍;再向左平移個(gè)單位長(zhǎng)度,最后代入,得答案;
(2)對(duì)在,由內(nèi)到外求出值域,因?yàn)?/span>恒成立,所以,,整理得答案;
(3)表示并化簡(jiǎn),由,是在內(nèi)有兩個(gè)不同的解,所以或,因需求,所以分別表示并代入,利用誘導(dǎo)公式和二倍角公式化簡(jiǎn),將式子中換成t得答案.
(1)將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象,再將的圖象向左平移個(gè)單位長(zhǎng)度得到函數(shù),所以,
又,所以;
(2)當(dāng)時(shí),,所以,
所以,
令,因?yàn)?/span>恒成立,
所以,,即
所以即的最小值為;
(3)法一:因?yàn)?/span>,
所以,是在內(nèi)有兩個(gè)不同的解,
所以或,
所以或
所以;
法二:①當(dāng)時(shí),不妨設(shè),
則有,所以,;
②當(dāng)時(shí),不妨設(shè),
則有,所以,;
③當(dāng)時(shí),顯然有,,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),解不等式;
(2)若關(guān)于的方程在區(qū)間上有兩個(gè)不等的實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形為矩形, 平面, .
(1)求證: ;
(2)若直線平面,試判斷直線與平面的位置關(guān)系,并說(shuō)明理由;
(3)若, ,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中“sinA>sinB”是“cosA<cosB”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱柱中,是正三角形,,點(diǎn)在底面上的射影恰好是中點(diǎn),側(cè)棱和底面成角.
(1)求證:;
(2)求二面角的大;
(3)求直線與平面所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知傾斜角為的直線過(guò)點(diǎn)和點(diǎn),點(diǎn)在第一象限,.
(1)求的坐標(biāo);
(2)若直線與兩平行直線,相交于、兩點(diǎn),且,求實(shí)數(shù)的值;
(3)記集合直線經(jīng)過(guò)點(diǎn)且與坐標(biāo)軸圍成的面積為,,針對(duì)的不同取值,討論集合中的元素個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)是水資源匱乏國(guó)家,節(jié)約用水是每個(gè)中國(guó)公民應(yīng)有的意識(shí).為了保護(hù)水資源,提倡節(jié)約用水,某城市對(duì)居民生活用水實(shí)行“階梯水價(jià)”,計(jì)費(fèi)方法如下表:
每戶每月用水量 | 水價(jià) |
不超過(guò)12的部分 | 3元/ |
超過(guò)12但不超過(guò)18的部分 | 6元/ |
超過(guò)18的部分 | 9元/ |
(1)該城市居民小張家月用水量記為,應(yīng)交納水費(fèi)y(元),試建立y與x的函數(shù)解析式,并作出其圖像;
(2)若小張家十月份交納水費(fèi)90元,求他家十月份的用水量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中e為自然對(duì)數(shù)的底數(shù).
(1)證明:在上單調(diào)遞增;
(2)函數(shù),如果總存在,對(duì)任意,都成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com