8.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow$=(cosα,sinα)且$\overrightarrow{a}$∥$\overrightarrow$,則tanα=( 。
A.3B.-3C.$\frac{1}{3}$D.$-\frac{1}{3}$

分析 利用向量共線,列出方程,然后求解即可.

解答 解:向量$\overrightarrow{a}$=(1,3),$\overrightarrow$=(cosα,sinα)且$\overrightarrow{a}$∥$\overrightarrow$,
可得3cosα=sinα,可得tanα=3.
故選:A.

點評 本題考查向量共線,三角函數(shù)化簡求值,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.定理:若函數(shù)y=f(x)的圖象關(guān)于直線x=a對稱,且方程f(x)=0有n個根,則這n個根之和為na(n∈N*).
利用上述定理,求解下列問題:
(1)已知函數(shù)g(x)=sin2x+1,x∈[-$\frac{5π}{2}$,4π],設(shè)函數(shù)y=g(x)的圖象關(guān)于直線x=a對稱,求a的值及方程g(x)=0的所有根之和;
(2)若關(guān)于x的方程2x4+2x+2-x-cosx-m2=0在實數(shù)集上有唯一的解,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|,(2$\overline{a}$$-\overrightarrow$)$•\overrightarrow$=0,則$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.30°B.120°C.60°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)=$\frac{{x}^{2}+a}{x+1}$在x=l處取得極值,則a=( 。
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知正方體ABCD-A1B1C1D1的棱長為1.
(1)求證:A1C1∥平面ABCD;
(2)求:△A1C1A的面積;
(3)求A1C1與平面A1B1BA所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.有5本不同的中文書,4本不同的數(shù)學(xué)書,3本不同的英語書,每次取一本,不同取法有(  )種.
A.3B.12
C.60D.不同于以上的答案

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某校為評估新教改對教學(xué)的影響,挑選了水平相當(dāng)?shù)膬蓚平行班進行對比試驗.甲班采用創(chuàng)新教法,乙班仍采用傳統(tǒng)教法,一段時間后進行水平測試,成績結(jié)果全部落在[60,100]區(qū)間內(nèi)(滿分100分),并繪制頻率分布直方圖如圖,兩個班人數(shù)均為60人,成績80分及以上為優(yōu)良.

(1)根據(jù)以上信息填好下列2×2聯(lián)表,并判斷出有多大的把握認為學(xué)生成績優(yōu)良與班級有關(guān)?
是否優(yōu)良
班級
優(yōu)良(人數(shù))非優(yōu)良(人數(shù))合計
合計
(2)以班級分層抽樣,抽取成績優(yōu)良的5人參加座談,現(xiàn)從5人中隨機選2人來作書面發(fā)言,求2人都來自甲班的概率.
下面的臨界值表供參考:
 P(x2?k) 0.10 0.05 0.010
 k 2.706 3.841 6.635
(以下臨界值及公式僅供參考${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知隨機變量x服從正態(tài)分布N(3,1),且P(2≤x≤4)=0.6828,則P(x>4)=(  )
A.0.1585B.0.1586C.0.1587D.0.1588

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.執(zhí)行下列程序框圖:如果x=5,則運算次數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案