【題目】給出下列說法:
①方程表示一個圓;
②若,則方程表示焦點在軸上的橢圓;
③已知點,若,則動點的軌跡是雙曲線的右支;
④以過拋物線焦點的弦為直徑的圓與該拋物線的準線相切,
其中正確說法的個數(shù)是( )
A.B.C.D.
科目:高中數(shù)學 來源: 題型:
【題目】等差數(shù)列{an}的前n項和為Sn,a2+a15=17,S10=55.數(shù)列{bn}滿足an=log2bn.
(1)求數(shù)列{bn}的通項公式;
(2)若數(shù)列{an+bn}的前n項和Tn滿足Tn=S32+18,求n的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年3月2日,昌平 “回天”地區(qū)開展了種不同類型的 “三月雷鋒月,回天有我”社會服務活動. 其中有種活動既在上午開展、又在下午開展, 種活動只在上午開展,種活動只在下午開展 . 小王參加了兩種不同的活動,且分別安排在上、下午,那么不同安排方案的種數(shù)是___________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】小郭是一位熱愛臨睡前探究數(shù)學問題的同學,在學習向量三點共線定理時,我們知道當P、A、B三點共線,O為直線外一點,且時,x+y=1(如圖1)第二天,小郭提出了如下三個問題,請同學幫助小郭解答.
(1)當x+y>1或x+y<1時,O、P兩點的位置與AB所在直線之間存在什么關系?寫出你的結論,并說明理由
(2)如圖2,射線OM∥AB,點P在由射線OM、線段OA及BA的延長線圍成的區(qū)域內(不含邊界)運動,且,求實數(shù)x的取值范圍,并求當時,實數(shù)y的取值范圍.
(3)過O作AB的平行線,延長AO、BO,將平面分成如圖3所示的六個區(qū)域,且,請分別寫出點P在每個區(qū)域內運動(不含邊界)時,實數(shù)x,y應滿足的條件.(不必證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在多面體中,四邊形為矩形,,均為等邊三角形,,.
(1)過作截面與線段交于點,使得平面,試確定點的位置,并予以證明;
(2)在(1)的條件下,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關系式,其中,為常數(shù),已知銷售價格為5元/千克時,每日可售出該商品11千克.
(1) 求的值;
(2) 若商品的成品為3元/千克, 試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圍建一個面積為40平方米的矩形場地,要求矩形場地的一面利用舊墻(舊墻足夠長),利用的舊墻需維修,其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2米的進出口,如圖所示,已知舊墻的維修費用為5元/米,新墻的造價為20元/米,設利用的舊墻的長度為(單位:米),修建此矩形場地圍墻的總費用為(單位:元)
(1)將表示為的函數(shù);
(2)試確定,使修建此矩形場地圍墻的總費用最小,并求出最小總費用.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是給定的平面向量,且為非零向量,關于的分解,有如下個命題:
① 給定向量,總存在向量,使得;
② 給定不共線向量和,總存在實數(shù)和,使得;
③ 給定向量和整數(shù),總存在單位向量和實數(shù),使得;
④ 給定正數(shù)和,總存在單位向量和單位向量,使得;
若上述命題中的向量在同一平面內且兩兩不共線,則其中真命題的序號為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com