10.若函數(shù)y=$\frac{1}{2}$sin2x+acosx在區(qū)間(0,π)上是增函數(shù),則實(shí)數(shù)a的取值范圍是a<-1.

分析 先求出函數(shù)y=$\frac{1}{2}$sin2x+acosx的導(dǎo)數(shù),問題轉(zhuǎn)化為:a<-2x+$\frac{1}{x}$,x∈(0,1),令g(x)=-2x+$\frac{1}{x}$,求出函數(shù)g(x)的單調(diào)性,從而求出a的范圍.

解答 解:∵y=$\frac{1}{2}$sin2x+acosx在區(qū)間(0,π)上是增函數(shù),
∴y′=cos2x-asinx>0,
∴1-2sinx2-asinx>0,
即-2x2-ax+1>0,x∈(0,1),
∴a<-2x+$\frac{1}{x}$,
令g(x)=-2x+$\frac{1}{x}$,
則g′(x)=-2-$\frac{1}{{x}^{2}}$<0,
∴g(x)在(0,1)遞減,
∴a<g(1)=-1,
故答案為:a<-1.

點(diǎn)評(píng) 本題考查了好的單調(diào)性,考查導(dǎo)數(shù)的應(yīng)用,考查轉(zhuǎn)化思想,問題轉(zhuǎn)化為:a<-2x+$\frac{1}{x}$是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.為了解某種干電池的壽命,電池廠隨機(jī)抽取了50節(jié)進(jìn)行測(cè)試,下面列出了每一節(jié)電池的使用壽命(單位:h):
11 14 25 13 11 20 15 30 9 16 13 10 14 11 10 16 19 12 0 20 16 10 15 14  22 19 10 33 3 12 16 19 23 15 20 11 17 14 23 15 12 15 12 10 13 11 9 8 13 17.   
(1)畫出相應(yīng)的頻率分布直方圖和頻率折線圖;
(2)以上電池使用的平均數(shù),眾數(shù),中位數(shù)分別是多少;
(3)由此,你能估計(jì)這種干電池的使用壽命嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{x}{lnx}$.g(x)=ax+1.
(1)若a=2,設(shè)函數(shù)h(x)=f(x)+g(x),求h(x)在(1,+∞)上的單調(diào)性;
(2)設(shè)函數(shù)f(x),g(x)的導(dǎo)函數(shù)分別為f′(x),g′(x),若?x1、x2∈(1,e2],f(x1)≤f′(x2)-g′(x2)成立.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=ax3+bx2+cx+1(a<0)的導(dǎo)數(shù)f′(x)滿足下列條件:當(dāng)1<x<4時(shí),f′(x)>0;當(dāng)x>4或x<1時(shí),f′(x)<0;當(dāng)x=4或x=1時(shí),f′(x)=0.
(1)試畫出函數(shù)f(x)的圖象;
(2)若f(x)的圖象與x軸有兩個(gè)交點(diǎn),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且 Sn=n2-4n+4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{a_n}{2^n}$,數(shù)列{bn}的前n項(xiàng)和為Tn,求Tn的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在等比數(shù)列{an}中,a1=$\frac{1}{2}$,a4=4,則$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…$\frac{1}{{a}_{n}}$=$4-\frac{4}{{2}^{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若圓臺(tái)兩底面周長的比是1:4,過高的中點(diǎn)作平行于底面的平面,則圓臺(tái)被分成兩部分的體積比是( 。
A.1:16B.39:129C.13:129D.3:27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)三次函數(shù)f(x)的導(dǎo)函數(shù)f′(x),函數(shù)y=xf′(x)的圖形的一部分如圖所示,則(  )
A.f(x)的極大值為f($\sqrt{3}$),極小值為f(-$\sqrt{3}$)B.f(x)的極大值為f(0),極小值為f(-3)
C.f(x)的極大值為f(3),極小值為f(-3)D.f(x)的極大值為f(3),極小值為f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,BC是圓O的一條弦,延長BC至點(diǎn)E,使得BC=2CE,過E作圓O的切線,A為切點(diǎn),∠BAC的平分線AD交BC于點(diǎn)D,DE=$\sqrt{3}$,則BE的長為3.

查看答案和解析>>

同步練習(xí)冊(cè)答案