若方程x2+2x+m=0有實根,-mx2+2x+1=0無實根,則m∈
 
考點:二次函數(shù)的性質
專題:函數(shù)的性質及應用
分析:當m=0時,兩個方程均有根,不滿足要求,當m≠0時,若二次方程x2+2x+m=0有實根,-mx2+2x+1=0無實根,可得
4-4m≥0
4+4m<0
,解得m的范圍
解答: 解:當m=0時,兩個方程均有根,不滿足要求,
當m≠0時,若二次方程x2+2x+m=0有實根,-mx2+2x+1=0無實根,
4-4m≥0
4+4m<0

解得m<-1,
即m∈(-∞,-1).
故答案為:(-∞,-1).
點評:本題考查的知識點是二次函數(shù)的性質,二次方程根的個數(shù)與系數(shù)的關系,注意要對m=0進行討論,盡管對最終答案沒有影響.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

拋物線C:x2=2py(p>0)的焦點為F,O為坐標原點;當拋物線上點N的縱坐標為1時,|NF|=2,已知直線l經(jīng)過拋物線C的焦點F,且與拋物線C交于A,B兩點
(1)求拋物線C的方程;
(2)若△AOB的面積為4,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖示:已知拋物線C:x2=4y的焦點為F,過點F作直線l交拋物線C于A、B兩點,經(jīng)過A、B兩點分別作拋物線C的切線l1、l2,切線l1與l2相交于點M.
(1)當點A在第二象限,且到準線距離為
5
4
時,求|AB|;
(2)證明:AB⊥MF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α為第三象限角,sinα=-
3
5
,則sin2α+cos2α=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A1B1C1D-ABCD為邊長為a的正方體,E,F(xiàn)分別是A1B1,C1D的中點,過EF作正方體截面,若截面平行于平面A1BCD1,則截面的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文)已知函數(shù)f(x)=||x-1|-1|,若關于x的方程f(x)=t(t∈R)恰有四個互不相等的實數(shù)根x1、x2、x3、x4(x1<x2<x3<x4),則x1+x2+x3•x4的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線y=-
1
2
(x+2)2-4的開口向
 
,頂點坐標
 
,對稱軸
 
,x
 
時,y隨x的增大而增大,x
 
時,y隨x的增大而減小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面直角坐標系內的兩個向量
a
=(1,2),
b
=(m,3m-2),且平面內的任一向量
c
都可以唯一表示成
c
=λ
a
-μ
b
(λ,μ為實數(shù)),則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1=2+i,z2=a-i,z1•z2是實數(shù),則實數(shù)a=(  )
A、2B、3C、4D、5

查看答案和解析>>

同步練習冊答案