4.利用計(jì)算機(jī)產(chǎn)生120個隨機(jī)正整數(shù),其最高位數(shù)字(如:34的最高位數(shù)字為3,567的最高位數(shù)字為5)的頻數(shù)分布圖如圖所示,若從這120個正整數(shù)中任意取出一個,設(shè)其最高位數(shù)字為d(d=1,2,…,9)的概率為P,下列選項(xiàng)中,最能反映P與d的關(guān)系的是( 。
A.P=lg(1+$\frac{1}g64gsk3$)B.P=$\frac{1}{d+2}$C.P=$\frac{{(d-5)}^{2}}{120}$D.P=$\frac{3}{5}$×$\frac{1}{{2}^jxa48he}$

分析 利用排除法,即可判斷.

解答 解:當(dāng)d=5時,其概率為P=$\frac{10}{120}$=$\frac{1}{12}$,
對于B,P=$\frac{1}{7}$,
對于C,P=0,
對于D,P=$\frac{3}{160}$,
故B,C,D均不符合,
故選:A.

點(diǎn)評 本題考查了函數(shù)模型在實(shí)際問題中的應(yīng)用,以及概率的問題,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.($\frac{x}{\sqrt{y}}$-$\frac{y}{\sqrt{x}}$)6的展開式中,x3的系數(shù)等于(  )
A.-15B.15C.20D.-20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=$\frac{4-x}{4x-2}$,在區(qū)間(0,$\frac{1}{2}$)∪($\frac{1}{2}$,2)上函數(shù)f(x)≥1的概率為(  )
A.$\frac{1}{4}$B.$\frac{7}{20}$C.$\frac{9}{20}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$,則不等式f(log2x)-f(log${\;}_{\frac{1}{2}}$x)≥$\frac{2({e}^{2}-1)}{{e}^{2}+1}$的解集為( 。
A.[$\frac{1}{2}$,+∞)B.[2,+∞)C.(0,2]D.[$\frac{1}{2}$,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某化工廠產(chǎn)生的廢氣經(jīng)過過濾后排放,以模型$y={P_0}{e^{-kx}}$去擬合過濾過程中廢氣的污染物數(shù)量ymg/L與時間xh間的一組數(shù)據(jù)時,為了求出回歸方程,設(shè)z=lny,其變換后得到線性回歸方程z=-0.5x+2+ln300,則當(dāng)經(jīng)過6h后,預(yù)報(bào)廢氣的污染物數(shù)量為( 。
A.300e2mg/LB.300emg/LC.$\frac{300}{e^2}$mg/LD.$\frac{300}{e}$mg/L

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若sinB+sinA=$\frac{\sqrt{3}(sin2A-sin2B)}{2(sinB-sinA)}$
(Ⅰ)求角C的大;
(Ⅱ)若△ABC為銳角三角形且滿足$\frac{m}{tanC}=\frac{1}{tanA}+\frac{1}{tanB}$,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}3x-y-2≤0\\ 2x-y≥0\\ y≥0\end{array}\right.$則目標(biāo)函數(shù)z=2x+y的最大值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.將函數(shù)y=$\sqrt{2}$cos2x的圖象向右平移$\frac{π}{24}$個單位后,與函數(shù)f(x)=cos(2x-$\frac{π}{3}$)+cos(2x+$\frac{π}{6}$)的圖象重合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若實(shí)數(shù)x,y滿足x2+y2-2x+2$\sqrt{3}$y+3=0,則x-$\sqrt{3}$y的取值范圍是( 。
A.[2,+∞)B.(2,6)C.[2,6]D.[-4,0]

查看答案和解析>>

同步練習(xí)冊答案