已知數(shù)列及其前項(xiàng)和滿足:(,).
(1)證明:設(shè),是等差數(shù)列;(2)求及.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列的前項(xiàng)和為,滿足:.遞增的等比數(shù)列前項(xiàng)和為,滿足:.
(Ⅰ)求數(shù)列,的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列對,均有成立,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的各項(xiàng)均為正數(shù),為其前項(xiàng)和,對于任意的,滿足關(guān)系式
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的通項(xiàng)公式是,前項(xiàng)和為,求證:對于任意的正整數(shù),總有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和,滿足:.
(Ⅰ)求數(shù)列的通項(xiàng);
(Ⅱ)若數(shù)列的滿足,為數(shù)列的前項(xiàng)和,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列和公比為的等比數(shù)列滿足:,,.
(Ⅰ)求數(shù)列,的通項(xiàng)公式;
(Ⅱ)若數(shù)列的前項(xiàng)和為,且對任意均有成立,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和為,若,,.
(1)求數(shù)列的通項(xiàng)公式:
(2)令,.
①當(dāng)為何正整數(shù)值時,;
②若對一切正整數(shù),總有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列:,即當(dāng)時,記.記. 對于,定義集合是的整數(shù)倍,,且.
(1)求集合中元素的個數(shù);
(2)求集合中元素的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列是首項(xiàng)的等比數(shù)列,其前項(xiàng)和中,、、成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列{}的前項(xiàng)和為;
(3)求滿足的最大正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列為正常數(shù),且
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)
(3)是否存在正整數(shù)M,使得恒成立?若存在,求出相應(yīng)的M的最小值;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com